SHIRE OF MOORA LOCAL PLANNING SCHEME NO. 4

NOTICE OF PUBLIC ADVERTISEMENT OF PLANNING PROPOSAL

Planning and Development Act 2005
Shire of Moora
The local government has received an application to use and/or develop land for the following purpose and public comments are invited.

Land Details:

Lot 80 (No.18201) Great Northern Highway, Miling

Proposal:

Construction and use of proposed new workforce accommodation on the abovementioned property including various associated improvements to accommodate up to twelve (12) people at any one time.

Details of the proposal are attached.
Comments on the proposal are now invited and can be emailed to shire@moora.wa.gov.au or posted to the Shire's Chief Executive Officer at PO Box 211 MOORA WA 6510 by no later than Monday 19 February 2024. All submissions must include the following information:

- Your name, address and contact telephone number;
- How your interests are affected; whether as a private citizen, on behalf of a company or other organisation, or as an owner or occupier of property;
- Address of property affected (if applicable); and
- Whether your submission is in support of, or objecting to the proposal and provide any arguments supporting your comments.

All submissions received may be made public at a Council meeting and included in a Council Agenda, which will be available on the Shire's website, unless a submission specifically requests otherwise.

Gavin Robins

Chief Executive Officer
Shire of Moora
18 January 2024

08 November 2023
Grower Service Centre

Gavin Robins
Shire of Corrigin
Via email: ceo@corrigin.wa.gov.au

Dear Gavin,

CHANGE OF USE TO WORKFORCE ACCOMMODATION AT LOT 80 (NO. 18201) GREAT NORTHERN HIGHWAY, MILING

CBH is seeking development approval from the Shire of Moora for a change of use to workforce accommodation on Lot 80 (No. 18201) Great Northern Highway, Miling. The subject application has been prepared in accordance with Schedule 2 (Deemed Provisions) of the Planning and Development (Local Planning Schemes) Regulations 2015 and the Shire of Moora Town Planning Scheme No. 4.

Proposal

The proposed development incorporates the following elements:

- Accommodation that caters for 12 people;
- Site amenities including kitchen, dining, laundry, and common room area;
- Covered areas, verandas, and associated amenities;
- Car parking bays for 13 people;
- Onsite effluent disposal system appropriate for accommodation of this size;
- The existing deconsecrated church is proposed to be retained.

Site Details

The subject land is located immediately south of the Miling townsite. The site is zoned 'rural townsite' under the Shire of Moora Town Planning Scheme No. 4 (TPS 4). The existing approved land use for this portion of the subject site is unknown but in recent years aerial imagery appears to have been for an 'agriculture-extensive' land use which is an ' X ' uses within the rural townsite zone as prescribed by the zoning table of TPS 4. There is also a deconsecrated church in disrepair on the lot and a 'place of worship' which is a "D' use within the 'rural townsite' zone.

Town Planning Considerations

Workforce accommodation is defined under the Planning and Development (Local Planning Schemes) Regulations 2015 as a 'premises which may include modular or relocatable buildings, used primarily for the accommodation of workers engaged in construction, resource, agricultural or other industries on a temporary basis and for an associated catering, sporting and recreation facilities for the occupants and authorised visitors'.

Workforce accommodation is a use not listed within Table 1 of TPS 4. Clause 3.2.4 of LPS 4 states that if the use of the land for a particular purpose is not specifically mentioned in the Zoning Table and cannot reasonable be determined as falling within the interpretation of one of the use categories the local government may:
(a) Determine that the use is consistent with the objectives and purposes of the particular zone and is therefore permitted; or
(b) Determine that the use may be consistent with the objectives and purposed of the zone and thereafter follow the ' A ' advertising procedures of clause 64 of the deemed provisions in considering an application for development approval; or
(c) Determine that the use is not consistent with the objectives and purposes of the particular zone and is therefore not permitted.

It is considered that the proposed land use is consistent with the relevant objective of the rural townsite zone below and may therefore be permitted on the subject site for the following reasons:
(i) To allow for a wide range of land uses such as may be found in a small country town, but subject to the preservation of local amenities.

No existing trees are affected by the development or are proposed to be removed. This vegetation retention ensures that the rural character and rural appearance of the rural townsite zone is maintained. Further the stormwater management plan for the development requires installation of a drainage basin. Drainage basins are consistent with the look and feel of the rural zone in which the subject lot is located adjacent to.

Previous correspondence with the Shire requested a landscaping plan be provided. A landscaping plan has been provided in support of this application for development approval. Minimal onsite planting has been proposed to compliment the vast expanse of existing 'agricultural-extensive' land uses (farms) surrounding the CBH facility. This planting will also aid in ensuring that the proposed development is appropriate to its context and that the rural character and appearance of the rural townsite zone is maintained acting as a buffer between the townsite ad surrounding rural zoned lots. The site plan demonstrates that the site has ample vacant land for landscaping purposes.

The accommodation structures themselves are second hand renovated units. The colour of the external walls is proposed to be 'paperback' and the roof and flashing colour is proposed to be 'deep ocean'. This is consistent with the rest of the CBH modular portfolio and is not considered to be out of context with the amenity of the rural townsite zone in which it is proposed to be located. Photos of the units 'as constructed' and a materials and colour palette have been provided as part of this application package.

The workforce accommodation should be considered a necessary incidental component to existing CBH operations on the adjacent lot. The workforce accommodation will solely be used for workers that work at the CBH facility during harvest. The benefit of this location is that the nuisance factor of irregular house noise and potential impact on other residential development is buffered by its location within the expansive rural townsite lot.

Noting this and that the CBH facilities and adjoining land uses are rural in nature, the impact on nearby amenity is considered negligible and the economic viability of the agricultural industry is maintained as this land use is an extension of agricultural activities.

Shire of Moora Town Planning Scheme No. 4

The proposal is subject to the site and development requirements prescribed by TPS4. Clause 3.8 of TPS4 sets out the site requirements for various land uses within the rural townsite zone which are to be 'in accordance with the residential design codes' (R-Codes). Table 1 of TPS4 offers a range of discretionary non-residential land uses within the rural townsite zone whereby the R-Codes should not be the appropriate mechanism to define the scale, nature, design, general appearance, and impact of the land use. It is conceded that the proposed workforce accommodation land use is not able to meet all the requirements of the residential development focussed R-Codes.

Clause 2.5 of the R-Codes allows the local government to exercise discretion to modify the development standards prescribed by the R-Codes in instances such as these. Further, Clause 67 (2c) of the Planning and Development (Local Planning Schemes) Regulations 2015 Deemed Provisions for Local Planning Scheme allows the local government to only have 'due regard' to any approved State planning policy allowing them to apply discretion in their assessment of the workforce accommodation land use against the provisions of the R-Codes.

Part IV of TPS4 sets out development requirements which are the local government's specific requirements to ensure the scale, nature, design, general appearance, and impact of such uses is compatible with the objectives of the zone in which the development is proposed and the general purposes and aims of the Scheme. The proposed development provides generous setbacks and is of a size and scale that maintains and protect the existing amenity, character, and appearance of the rural townsite zone.

Front setback areas from Dookling Drive are confined solely for use as a means of access, the daily parking of vehicles, the loading and unloading of vehicles as well as landscaping. Car parking spaces are to be specified by the local government and have been provided as one space per dwelling with an additional two spaces for the use of laundry and maintenance workers as required.

It is considered that the setbacks, height, plot ratio and number of car parking spaces provided are appropriate to the zone in which the development is located.

DPLH Workforce Accommodation Position Statement

The Department of Planning, Lands and Heritage Position Statement on Workforce Accommodation is designed to assist decision makers in the planning system in understanding the land use planning considerations for workforce accommodation. The position statement identifies that where practical, workforce accommodation should be provided in established towns, in location suitable to its context, to facilitate their ongoing sustainability. It is considered that the proposed location meets the objectives and purpose of this position statement in that it is proposed in a location within proximity to the grain handling storage facility it is designed to service whilst also being locate on the edge of the Miling townsite ensuring easy access to essential services. The proposed location of the workforce accommodation should therefore be supported.

Standard considerations for a development application of this type are traffic generation, onsite effluent disposal, noise and dust management and stormwater management. A drainage report and a Traffic Impact Statement have been included as attachments to this application in support of this application and are summarised below.

On-site Effluent Disposal System

The location, setback and specifications of leach drains is subject to further approval by the Department of Health that falls outside of the development application process. Notwithstanding an area for sub soil irrigation has been shown on the site plan to demonstrate that the site can appropriately accommodate onsite effluent disposal. Early engagement with the Department of Health identified that the level of information provided as part of this application for development approval is sufficient.

As part of the subsequent application to install a wastewater system, the Department of Health will determine whether a site and soil analysis is required once the application is received however given there is an existing septic system onsite this requirement is considered unlikely. Notwithstanding a Geotechnical Report and Site and Soil Evaluation detailing some analysis has been provided as an attachment to this application for development approval.

Stormwater Management

The stormwater management strategy is for all surface runoff on the site to be managed to prevent flooding or damage to critical infrastructure. Paved surfaces are graded to direct stormwater runoff to open drainage conveyance system. Surface water runoff up to the 20year ARI event is to be conveyed via an open drainage system. Surface water incident to the site from up to the 20-year ARI critical storm event is to be detained onsite with a controlled outflow limited to the predevelopment flow rates.

The stormwater drainage system has been designed in accordance with the requirements of CBH Design Specification TS10A - Civil Earthworks, Roads and Drainage and followed guidelines set out in the Australian Rainfall \& Runoff. Open drains and culverts have been designed to convey the 20-year ARI rainfall event. Further detail including a catchment plan is provided as part of Stantec's Stormwater Management Plan attached in support of this application for development approval.

Traffic Management

A Traffic Impact Statement (TIS) has been prepared by Shawmac demonstrating that the site is well connected to the surrounding road network and that the proposed facility will not result in significant changes to traffic movements on the surrounding road network.

As shown on the site plan, vehicular access is to be taken via a proposed crossover from Dookling Drive along the south-eastern boundary of the site. Dookling Drive provides direct access to Great Northern Highway and Miling W Road which accesses the CBH grain handling and storage facility.

During the harvest period from October to December, most staff will stay and work on site. For the remainder of the year, there will be some staff in the accommodation who may travel to and from the site 1 to 2 times per week. This volume of traffic generated by the development will be low and can easily be accommodated within the existing capacity of the road network with no major impact.

Based on the proposed 12 rooms, 13 car parking spaces should be considered sufficient. There may be a small number of staff movements such as laundry and maintenance workers which would utilise the surplus car parking spaces. It is understood that these staff movements are expected to occur during the day when workers are away from the accommodation working at the CBH storage and handling facility. Noting the proximity of the accommodation to the facility it is largely expected workers would leave their car and walk to the facility.

The TIS also demonstrates that the site is provided with the appropriate level of parking, minimum car parking space dimensions, sightlines, and manoeuvring areas. Further detail is provided as part of Shawmac's Transport Impact Statement attached in support of this application for development approval.

Noise \& Dust Management

CBH shall ensure that noise from the specification and installation of any mechanical equipment as well as traffic and construction noise does not exceed assigned levels prescribed in the Environmental Protection (Noise) Regulations 1997, when it is received at a neighbouring property. Dust Management will comply with Environmental Protection Act 1986 and the relevant National Environmental Protection Measures.

CBH is committed to improving the overall environmental impacts of its business and in achieving the environmental objectives outlined in the CBH Group Health, Safety and Environmental Policy. CBH undertakes frequent noise and dust monitoring across its sites to ensure that dust and noise levels are measured and are mitigated whenever there is an exceedance.

European Heritage

The deconsecrated church on the subject site is listed within the Shire of Moora's Municipal Heritage Inventory (MHI) with an assigned management category 4. As the Shire has not prepared and adopted a Local Heritage List, there are no statutory controls applicable to the proposed development to provide for the long-term protection of the subject land's local heritage values.

As the deconsecrated church is located on private land, CBH has no intention to allow public access onto the lot. CBH intends to retain the church and notes that it is in a state of disrepair but has no plans to restore it. It is likely the church will be fenced off from the rest of the workforce accommodation development however a decision on this has not be finalised.

Conclusion

The proposed land use and associated works are aligned with the planning framework for the area specifically the rural townsite zone in which it is located, and it is not considered to result in any new amenity impacts to the surrounding area. CBH respectfully requests the Application for Development Approval is considered favourably by the Shire of Moora given the straightforward nature of the application and its general compliance with the Shire's planning framework. Should you have any questions in relation to the application, please contact Timothy Roberts on 92166061 or timothy.roberts@cbh.com.au.

Yours Sincerely,

Timothy Roberts
Lead - Planning \& Approvals

SHIRE O FORM 1 - APPLICA	OORA TION	NNING SCHEME NO. 4 VELOPMENT APPROVAL
Owner Details		
Name/s: Co-operative Bulk Handling Ltd		
ABN (if applicable): 29256604947		
Postal Address: Level 6 No. 240 St George's Terrace, Perth, WA Postcode:		
Work Phone: 0892166061 Home Phone: Mobile Phone:		E-mail: timothy.roberts@cbh.com.au
Contact Person for Correspondence: Timothy Roberts		
Signature: \qquad		Date: 08 November 2023
Signature:		Date:
NOTES: i) Use and attach a separate copy of this page where there are more than two (2) landowners. ii) The signature/s of all registered owner(s) as listed on the land's Certificate of Title is required. This application cannot proceed without the required signature/s. For the purposes of signing this application an owner includes the persons referred to in the Planning and Development (Local Planning Schemes) Regulations 2015 Schedule 2 clause 62(2). Land owned by an incorporated body (i.e. a company) must be signed by: - 1 director of the company, accompanied by the company seal; or - 2 directors of the company; or - 1 director and 1 secretary of the company; or - 1 director if a sole proprietorship company. Print the full names and positions of company signatories underneath the signatures. iii) A copy of the Certificate of Title for all land the subject of this application must be provided and can be purchased through Landgate directly if required. iv) Development Applications relating to Unallocated Crown Land, Unmanaged Crown Reserves, land under management order to the Shire of Moora where the development is not consistent with the reserve's purpose, or is used for commercial purposes, or land which is subject to a lease issued under the Land Administration Act 1997 need to be referred to the Lands Division of the Department of Planning, Lands and Heritage for consideration and signing.		
Applicant Details (if different from owner)		
Name/s: Co-operative Bulk Handling Ltd		
Address: Level 6 No. 240 St George's Terrace, Perth, WA Postcode: 6000		

Description of Proposed Works and/or land use:
$12 x$ single person quarters; shared site amenities including kitchen, dining, laundry \& common area; covered areas \& verandas; car parking bays for 14 people and on-site effluent disposal system.

Description of exemption claimed (if relevant):
NA

Nature of any existing buildings and/or land use:
Place of Worship

Approximate cost of proposed development (excluding GST):
\$2,200,000
OFFICE USE ONLY
Date application received:
Received by:
Application reference number:
Application fee payable: \$
Date of receipt of application fee from applicant:
Receipt number for application fee:

AUSTRALIA

RECORD OF CERTIFICATE OF TITLE

UNDER THE TRANSFER OF LAND ACT 1893

The person described in the first schedule is the registered proprietor of an estate in fee simple in the land described below subject to the reservations, conditions and depth limit contained in the original grant (if a grant issued) and to the limitations, interests, encumbrances and notifications shown in the second schedule.

LAND DESCRIPTION:

LOT 80 ON DEPOSITED PLAN 33218

REGISTERED PROPRIETOR:
 (FIRST SCHEDULE)

GENOCANNA NOMINEES PTY LTD OF POST OFFICE BOX 32, MILING
(T K543833) REGISTERED 25/3/2008

LIMITATIONS, INTERESTS, ENCUMBRANCES AND NOTIFICATIONS: (SECOND SCHEDULE)

1. EXCEPT AND RESERVING METALS, MINERALS, GEMS AND MINERAL OIL SPECIFIED IN TRANSFER 5680/1925.

Warning: A current search of the sketch of the land should be obtained where detail of position, dimensions or area of the lot is required.

* Any entries preceded by an asterisk may not appear on the current edition of the duplicate certificate of title. Lot as described in the land description may be a lot or location.

END OF CERTIFICATE OF TITLE

STATEMENTS:

The statements set out below are not intended to be nor should they be relied on as substitutes for inspection of the land and the relevant documents or for local government, legal, surveying or other professional advice.

SKETCH OF LAND:	DP33218
PREVIOUS TITLE:	$1076-890$
PROPERTY STREET ADDRESS:	18201 GREAT NORTHERN HWY, MILING.
LOCAL GOVERNMENT AUTHORITY:	SHIRE OF MOORA

NOTE 1: A000001A LAND DESCRIPTION AMENDED ON ORIGINAL CERTIFICATE OF TITLE - BUT NOT SHOWN ON CURRENT EDITION OF THE DUPLICATE.
NOTE 2: SKETCH ON ORIGINAL SUPERSEDED PAPER TITLE AMENDED - BUT NOT SHOWN ON CURRENT EDITION OF THE DUPLICATE.

signature
SIGNATURE DATE
NOTE: These drawings have been approved for manutaruring. Should any
changes need to be made after the appoveed date, the contract will need to changes need
be revewed

General Arrangement

EQUIPMENT LIST

1. 2200 mm high white melamine cupboardsw 5 adjustable shelves
2. AC Wall Mounted Unit
3. Table (Supplied by CBH)
4. Chair (Supplied by CBH)
5. Stainless steel bench with 2 sets of 2 lockable drawers on opposing
corners as per layout - 1829Lx914Wx900H
6. Nom 500L freezer (Supplied by CBH)
7. Nom 500 L fridge (Supplied by CBH)
8. Dishwasher Supply - Cold water (dishwasher supplied by CBH) 9. Floor Waste
9. Stainless steel benchw intergrated sink \& splashback-1800Lx610W×900H 11. Microwave on wall mounted SS shelf (Microwave supplied by CBH)
10. Stainless steel bench $-914 \mathrm{Lx610W} \times 900 \mathrm{H}$
11. 4 Burner SS gas stove \& oven (Supplied by CBH)
15.900 mm Cooker hood (supplied by CBH)
12. Toaster (supplied by CBH)
13. Kettle (Supplied by CBH)
14. Washing machine supply 600 wide (Washing machine supplied by CBH) 20. Stainless steel benchw integrated sink \& splashback-2170Lx610Wx900H 21. Wall mounted Ironing board
15. 15L rubbish bin (Supplied by CBH)
16. AC condenser
17. 300L hot water unit \square

BUILDING CONSTRUCTION - SHORT SPECIFICATION - Chassis: fabricated structural steel beams; LC100 joists (400c) - Chassis paint spec: Black zinc enamel (75microns)

- Floor substrate: 22 mm Durafloor
- Laundry/kitchen floor covering: Accolade Safe vinyl w. coved skirting
- Dining/Lounge floor covering: Accolade Plus vinyl w. coved skirting
- External Walls: $92 \mathrm{~mm} \times 1.15 \mathrm{bmt}$ steel studwork (600c)
- Internal walls: $92 \mathrm{~mm} \times 1.15 \mathrm{bmt}$ steel studwok (600c)
- Wall insulation: R2.2 insulation; R0.2 thermal wrap between framing/cladding
- Ceiling insulation: R4.1 ceiling batts
- Floor insulation: R2.2 Rigid insulation board between floor joists
- Roof structure: $92 \mathrm{~mm} \times 1.15 \mathrm{bmt}$ steel framework (400c)
- External wall cladding: Custom Orb (horizontal)
- Roof cladding: Lysaght trimdek; matching barges, gutters \& flashings
- Internal wall cladding: 3.6 mm pre-finished Poly Ply
- Ceiling cladding: 3.6 mm pre-finished Poly Ply
- Doors: face mounted steel clad door in steel split frames
- Windows: face mounted aluminium sliding windows with 6.52 mm laminates glass

CBH 2024 Accomodation Project

Project number Date Drawn by Drawing number Revision
Revision

Project Number 31/05/2023

CBH 2024 Accomodation Project
KITCHEN, DINING, LAUNDRY UNIT GENERAL ARRANGEMENT PLAN

BUILDING DESIGN CRITERIA NCC Class 6 Building
Wind Region A
Climate zone 4

COLOUR SCHEDULE	
Ext. Cladding:	Paperbark
Ext. Cladding (2):	Deep Ocean
Doors:	Deep Ocean
Door frames:	Deep Ocean
Internal Walls:	Embossed White
Ceiling:	Mirage Pearl
Windows:	Deep Ocean
Vinyl:	Blue Bells
Cabinetry:	White
Benches:	Stainless Steel
Blinds:	Charcoal
PVC Skirting:	Black
Cornice Angle:	White Gloss

A100


```
CLIENT APPROVAL
\
\
SATMEN
```

SATMEN

```
BARGE DETAIL

(2102) \({\underset{1}{1: 10}}^{2}\) (OOR/WALL DETAIL

APPROVED FOR STRUCTURAL SUFFICIENCY A K Pollock FIIEAust CPEng NER APEC engineer IntPE(Aust)
- Noggin fixed through studs using 50 mm timber screws. Pre-drill hol fixing studwork to ensure tight

18 mm ply noggin board cut tight between studs. Install to required
height as needed. Fixture to be flush against PolyPly \& fixed through into
ply noggin ply noggin
- Notch noggin around lip in studwork to ensure noggin is flush against the back face of the Polyply
- Noggin fixed through studs using 50 mm studwork to ensure tight fixing

\section*{\(\underset{1: 5}{\text { TYPICAL NOGGIN DETAIL }}\)}


WINDOW SIDE FIXING DETAIL


SPLIT DOOR FRAME FIXING DETAIL

CBH 2024 Accomodation Project
KITCHEN, DINING, LAUNDRY UNIT SECTION DETAILS



Elevation A


Elevation C
1:50


Elevation B


Elevation D
1:50


Elevation E
1:50


Elevation G
1:50


Elevation F
1:50


Elevation H
1:50
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Window Schedule} \\
\hline Mark & Height & Width & Operation & Details & Colour & Count \\
\hline W1 & 1000 & 1156 & Face-fit sliding & 2 light; 5 mm Clear Toughened; 610 mm Aluminium mesh flywire & Deep Ocean & 3 \\
\hline W2 & 1200 & 1156 & Face-fit sliding & 2 light; 5 mm Clear Toughened; 610 mm Aluminium mesh flywire & Deep Ocean & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Door Schedule} \\
\hline Mark & Height & Width & Operation & Details & Frame Type & Door Type & Door Colour & Frame/scre en Colour & Count \\
\hline D1 & 2040 & 920 & Single Swing Right Hand & Carbine PS4000-6000 Series Entrance Set (knob/lever - Escape function); Kilaro fixed door bottom seal; Aluminium mesh fly screen & 2 Piece portable building frame & 37mm Medium Density Polystyrene Core & Deep Ocean & Deep Ocean & 1 \\
\hline D2 & 2040 & 920 & Single Swing Left Hand & Carbine PS4000-6000 Series Entrance Set (knob/lever - Escape function); Kilaro fixed door bottom seal; Aluminium mesh fly screen & 2 Piece portable building frame & 37mm Medium Density Polystyrene Core & Deep Ocean & Deep Ocean & 1 \\
\hline
\end{tabular}

CBH 2024 Accomodation Project
Project number
KITCHEN, DINING, LAUNDRY UNIT

\section*{CLIENT APPROVAL}

APPROVED FOR STRUCTURAL SUFFICIENCY

\(\underset{1: 50}{\text { Wall Layout }}\)
NOTES
- All stud/track framing components fixed together using drill point metal screws

(D Ceiling Level \(\qquad\)
 2400
( Floor Level
0

\(\underset{1: 50}{\text { North Wall Frame }}\)
1:50

NOTES
- All stud/track framing components fixed together using drill point metal screws
(D) Ceiling Level \(\qquad\)

Floor Level 0

South Wall Frame
1:50

\({ }_{1}\) North Sheet Layout
:75


South Sheet Layout
1:75


F1



East Sheet Layout
1:75

\begin{tabular}{|l|l|l|l|}
\hline TYPE & MARK & DIM (mm) & CNT \\
\hline Custom Orb Paperbark & N1 & 13700 & 2 \\
\hline Custom Orb Paperbark & N2 & 1270 & 2 \\
\hline Custom Orb Paperbark & N3 & 4508 & 2 \\
\hline Custom Orb Paperbark & N4 & 5988 & 2 \\
\hline Custom Orb Paperbark & E1 & 4200 & 4 \\
\hline Custom Orb Paperbark & S1 & 13700 & 4 \\
\hline Custom Orb Paperbark & W1 & 4200 & 4 \\
\hline Barge Flashing (see detail) & B1 & 14100 & 1 \\
\hline Barge Flashing (see detail) & B2 & 4300 & 1 \\
\hline Barge Flashing (see detail) & B3 & 4300 & 1 \\
\hline Monoclad Deep Ocean & R1 & 4280 & 19 \\
\hline Corner Flashing (see detail) & F1 & 2700 & 4 \\
\hline Easiline Commercial gutter Deep Ocean & G1 & 14100 & 1 \\
\hline D/Pipe 100x50 Paperbark & DP & 2400 & 3 \\
\hline Astragal 100x50 Paperbark & & & 9 \\
\hline Nozzle/Pop 100x50 Zincalume & & & 3 \\
\hline Easiline gen Pur Bracket (gal) & & & 12 \\
\hline Easiline Gutter Stop End (Left) & & & 1 \\
\hline Easiline Gutter Stop End (Left) & & & 1 \\
\hline
\end{tabular}

CBH 2024 Accomodation Project
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{SHEET LIST_GENERAL} \\
\hline SHEET NUMBER & SHEET NAME \\
\hline A00.CSO2 & CODE LEGEND \\
\hline A02-FP01 & FLOOR PLAN \\
\hline A03-EL01 & External elevation \\
\hline A03-EL02 & External elevatio \\
\hline A04-SC01 & SECTIONS \\
\hline A05-RP01 & ROOF PLAN \\
\hline A05.-P10 & REFLECTED CELING PLAN \\
\hline A06-E01 & internal elevations \\
\hline A07-S022 & FLASHING DETALS \\
\hline A07-SD20 & CONSTRUCTION DETALIS \\
\hline A08-SH01 & DOOR \& WINDOW SCHED \\
\hline A10-ST01 & FOOTING LAYOUT \\
\hline A11-SR01 & ELECTRICAL \& Data \\
\hline
\end{tabular}


4P SPQ

```

wMC-01 CORRIGATEDIRON
EXTERNAL WALL
LOUR: PAPERBARK
WPP.01 POLYPLY
INTERNAL WAL
COLOUR:MALLE PEARL
THCKNESS: 3MM
RMS-01 ROOF SHEETING
SUPERDECK ROOF SHEETNG
COLOUR: DEEP (
REL-010X FLASHINGS (INCLUDING CORNER TRIMS)
MATERAL: COLORBOND
RBF-01 BARGE CAPPING
MATERAL:COLORBON

```
FLOORING LEGEND
FVI-01 VINyL
    VIIYL
TYPE:
COOMm COMM COMERCIAL GRADE VINYL
        COLOUR: NEUTTAL GRE
TOL BEROMS
        0 ALL BEDROOMS
O INCLUDE WSK-O
FVV-02 VINYL
    ITYYL

        TO ALL WET AREAS
TO INCLUDE WSK-02
\(\begin{array}{ll}\text { Wsk-01 } & \left.\begin{array}{ll}\text { SKIRTING } \\ \text { PVC SKIRTII }\end{array}\right]\end{array}\)
    чOMM HIGH.
        COLOUR: TO MATCH
TO ALL WET AREAS
wsk-02 Skirting
    SKIRITIG
COVED VINL SKIRTING
    1000MM HIGH
    TYPE: TO MATCH FV-02
COLOUR: TT MATCH FVV
    COLOUR: TOM MATCHFV
TO ALL WET AREAS

\section*{INSULATION}

CIN-01 \({ }_{\text {R2.5 }}^{\text {CELING: }}\) EARTHWOOL BATTS BETWEEN CELING JoIsts
\(\begin{array}{ll}\text { RIN-01 } & \text { ROOF: } \\ & \text { R1.3 }\end{array}\)
FIN.01 FLOOR: \({ }_{\text {R2NTI-CONDENSATION BLANKET }}\)
INTERNAL WALL \& CEILING FINISHES LEGEND
CPB-01
COLOOUR: MRAGEE PEARL TO ALLAREAS
TO INCLUDE CCC-01
CCC-01 ALUMINUM CORNICE ALOMINUM CORNCE
4OMM \(\times\) AMM ALUMINUM ANGLE

WSK-03 WALL-SPLASH BACK MATERAL : CERAMIC 200MM \(\times 200 \mathrm{MM}\). . \({ }^{\text {COOLOR: WHITE }}\)

OINERY IEGEND

JCF-01 HALF HEIGHT WARDROBE TO NNCLUDE \(2 \times\) SHELVES
OVER RRIDGE RECESS SIZE: 575 MM W X \(540 \mathrm{MM} \mathrm{D} \mathrm{X} \mathrm{900MM}\)
JCF-02 FULL HEIGHT WARDROBE TO INCLUDE WARRROBE RALLS AND TOP SHELF
SIZ: 355 MM W X4OMM D X 1800 MM H
JBE-01 FIXEDLAMNATE BENCH
STUDY
DEPTH: 450MM
DTDT:
DEPTH: 450MM
WITT: 100 MM
THICKNESS: 2S5MM MELAMINE
WALL MOUNTED
AOTES:
LOOSE FURNITURE LEGEND
LBD-01 BED \(\quad\) KING SINGLE BED WTH BED HEAD
LCH-01 CHAR WITH WHEELS

\section*{IXTURES}

15 LTRE BAR FRIDG
ten-01 bASIN TYPE: WHITE CERAM
TO INCLUDE MIXER

TSB-01 SHOWER SoOMMX9OOMM FIBREGLASS UNIT

1 w
CERAMC TOILET
COLOUR: WHITE
xM1-01 MRROR MRROR
COOMM W 5 535MM HIGH
CW N NUULT TSHELF xsC-01 Shower curtain
\begin{tabular}{ll} 
xTR-01 & \(\begin{array}{l}\text { TowEL RALL } \\
\text { SINGLE TOWEL RAIL }\end{array}\) \\
\hline
\end{tabular}
xtR-01 TOILET ROLL HOLDER
хсн-01 Соat hook

\begin{tabular}{l} 
PROJECT NO:: \\
Joou099 \\
\hline PROJECT STATUS \\
ISSUED FOR REVIEW \\
\hline PROJECT CLENT
\end{tabular}

Nin
为
PROJECT: SHEI
4 PSPQ

SHEET
CODE LEGEND






罒
为
\begin{tabular}{lll}
\begin{tabular}{lll} 
PROJECT: \\
4P SPQ
\end{tabular} & SHEET \\
& EXTERNAL ELEVATIO \\
& & \\
& & \\
\hline PROJECT ADDRESS \\
GINGIN
\end{tabular}


\(\qquad\) \(\underset{1: 50}{\text { REAR ELEVATION }}\)


SIDE 2 ELEVATION
 PROECT STATUS PROECT CLIENT








CBH
CBJ
AUSTRALIA







\section*{FIEETMNOCD}



\section*{J004099 PROEEC TTATUS} ISSUED FOR REVIEW PROJEC CLLEN
CBH

\section*{SERVICES FIXTURES}

REFER TO SERVICES CONSULTANTS DRAWINGS FOR ALL SERVVCES
FIXTURES SPECIFICATONS, REQUREMENTS AND SCHEDULES.
MRING SHALL BE IN ACCORDANCE WITH A.S 3000, A.S 3008
HE RELLEVANT LOCAL ELECTRICAL AUTHORITY.
CONTRACTORS SHALL BEFORE COMMENCEMENT OF CONSTRUCTION O
SERVICES, CHECK ALL SETOUTS AND DIMENSIONS. ,
THE ELECTRICAL INSTALLLTION MUST COMPLY WITH REQUIREMENTS O
位
CELING FIXTURES GENERALLY TO BE CENTRED WITHIN ROOMS UNLESS
+
NOTE SET OUT IS MIRRORED WHERE NO ADDITIONAL DIIENSIONS ARE
CEILING FINISHES
\(\square\) CPP-01 POLYPLY CELING
CCCA-01 ALUMINUMM CORNICE
LIGHTING FIXTURES
- BRL \(\underset{\text { TYPE: RECESSED. }}{\text { LED LIGT. }}\)

\section*{FIRE DETECTION FIXTURES}
(3) BSD SMOKEDETECTOR

\(\qquad\) REFLECTED CEILING PLAN

\section*{FIEETMNOCD \\ AUSTRALIA}


SENERA NOTES

Eetm ind
\begin{tabular}{lll} 
PROJECT NO: & PROJECT: & SH \\
Joota99 & 4PSQ & R \\
\hline
\end{tabular}

REFLECTED CEILING PLAN
PRoJECTTATUS ISSUED FOR REVIEW PROECT CLIENT
CBH CBH


\begin{tabular}{|c|c|}
\hline 1 & \multicolumn{1}{|c|}{ INTERNAL ELEVATION 1} \\
\hline A06-E01 & \(1: 50\) \\
\cline { 1 - 1 } & \\
\hline
\end{tabular}

A06-1E01
A06-1E01




PROJCT:
4P SPQ
HEET PROJECT CLIENT свн Hisidemenemend tho


CBH
\({ }^{\text {PROJECT ADORESS }}\)
GINGIN \(\qquad\)




\(\qquad\) RFL-01. HIGH SIDE/BARGE FLASHING


FLASHING TO BE PROFLLED


\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\({ }_{\text {PROJECT }}\)} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
SHEET \\
FLASHING DETAILS
\end{tabular}}} \\
\hline & & & \\
\hline \multirow[t]{2}{*}{PROJECT ADDRESS GINGIN} &  & \({ }_{\substack{\text { SCALE } \\ 1: 5}}\) & \({ }_{\text {A3 }}^{\text {SIE }}\) \\
\hline &  & & A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline PRoJECT No: & PROUECT: \\
\hline J004099 & 4 PSPQ \\
\hline Prooect tatus & \\
\hline ISSUED FOR REVIEW & \\
\hline PROJECT CLIENT & PROJECT ADDRESS \\
\hline CBH & GINGIN \\
\hline
\end{tabular}
\(\qquad\) SUPADEK METAL ROOF CLLADDING
COLOUR: DEEP OCEAN





A07-SD20

\section*{WINDOW NOTES}


REVEAL SIZE MUST BE 115 MM (PLEASE ALLOW TO CUT
DOWN).
Windows to Be 2200 PA / 300 Water.
WINDOWS SHALL BE ALUMINUM FRAMED NATURAL
ALL GLAZING To COMPLY WITH AS 2047 \& AS 1288 GLAZIIG
CODES FLYSCREENS To all operable windows.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{WINDOW SCHEDULE - MARK NUMBERED} \\
\hline TYPE & mark & Location & WIDTH & Helght & GLazing & WINDOW & comments \\
\hline W1 & 01 & BEDROOM 1 & 700 & 1400 & CLEAR & AWNING & SECURTY SCREEN \& BLINDS \\
\hline W1 & 02 & BEDROOM2 & 700 & 1400 & CLEAR & AWNING & SECURTY SCREEN \& BLINDS \\
\hline W1 & 03 & BEDROOM 3 & 700 & 1400 & CLEAR & AWNING & SECURTY SCREEN \& BLINDS \\
\hline W1 & 04 & BEDROOM 4 & 700 & 1400 & CLEAR & AWNING & SECURTY SCREEN \& BLINDS \\
\hline W2 & 01 & BATH 1 & 400 & 400 & OBSCURED & FIXED & N/A \\
\hline W2 & 02 & BATH2 & 400 & 400 & OBSCURED & FIXED & N/ \\
\hline W2 & 03 & ВАТН 3 & 400 & 400 & OBSCURED & FIXED & N/A \\
\hline W2 & 04 & BATH4 & 400 & 400 & OBSCURED & FIXED & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ WINDOW PROCUREMENT SCHEDULE } \\
\hline TYPE & COUNT \\
\hline W1 & 4 \\
\hline W2 & 4 \\
\hline
\end{tabular}

NOTE: BUSHFIRE ATTACK LEVEL 29

DOOR NOTES

MODULE NUMBER \(\xrightarrow{\text { 6\#\#\#, DOD: DOR TTPE }}\)

\section*{DOORS TO BE NOMINAL HEIGHT OF 2000OMM UNLESS}

SRE.
DOORS GLAZING TO CONFORM TO A.S 1288
DOOR HARDWARE AS REFERRED TO IN SPECIFICATION. DOORS TO BE KEYED AS PER SPECIFICATION. MASTER BULLDER KEYS UNLESS NOTED OTHERWISE IN
SPECFIFCATOO. SPECIFICATION
ALL DOORS TO BE FITTED WITH APPROVED AIR SEALS AS
PER SECTON 'IOF THE BCA.
ALL EXIT DOORS AND DOORS LEADING TO EXITS TO BE
PROVIDED WTH COMPLIANT HARDWARE - -ie. READIIY PROVIDED WTH COMPLAANT HARDWARE- Ie. READILY
OPENABLE WITHOUT AKEY FROM THE SIDE THAT FACE GRESS BY A SIGGLE HAND DOWNWARD ACTION NONA SINGLE DEVICE BETWEEN 900MM AND 1.1M FROM THE

ALL DOORS WILL BE CONTRASTING TO FRAMES IN ACORDANCE WTH AS1428.1-2009
IIN. 530MM LaTCH CLEARANCE FROM THE EXTERNAL
MIN. \(530 M\) M LATCH CLEARAAC
SIDE OF BOTH ENTRY DOORS.


NOTE: DIMENSIONS ARE TO
OPENNG IN RAME. DOOR
LEAF TO BE 10Om WIDER


\section*{EIEETMOCD \\ AUSTRALIA}





\begin{tabular}{l} 
PROJECT NO:: \\
Joo4099 \\
\hline PROJECT STATUS \\
ISSED FOR
\end{tabular}

PROJECT
4PSPQ
PROJECT STATUS ISSUED FOR REVIEW

PROJECT
CBH

\section*{Promectadores}

PROEECT ADDRESTIE DOWN 1
600 DIA 1200 DEEP MASS CONCRETE PAD FOOTNG

NOTE LEASE INFORM FLEETWOOD IMMEDATELY I F ANY NEW O EXISTING BUILDINGS ON SITE ARE WITHIN 3M OF BULLDING

SOIL CLASSIFICATION: TBD
FOUNDATION NOTES
FOUNDATION SOLL TO BE CLEAN, COMPACT, NATURAL GROUND, FREE OF EXCESSIIE MOISTURE
He overall site should be graded to ensure storm WATERCAN REELY DRANAWAY ROM THE BULDNGG Me SURROUNDING GROUND IS TO BE BULLT UP TO WITHIN 125m OF THE FLOOR LEVEL OF THE HOUSE WHCH WLLL
ISURE THE SURFACE WATER IS DVERTED WELL BACK FROM Ensube Th
HEHOUSE.

STRP THE SITE TO A MINMUM OF 100MM OR AS TO REMOV L Topsoll.
RREPARE SITE SUCH THAT SURFACE RUNOFF CANNOT DRAIN NOTE
TYPICAL LOOTING LAYOUT ONLY DESIGN AND INSTALLATION ON
STE BY OTHERS
TE DOWN REQUIREMENTS BY OTHERS.
GROUND SHALL BE COMPACTED TO ACHEV
FOR SAND SITES- MINMUM 6 BLOWS OVER 150-450mm, 7 BLOWS
OVER 450-750mm AND 9 BLOWS OVER 750-1050mm WITH A PERTH OVER 450-750mm AND 9 BLOWS OVER \(750-1050 \mathrm{~mm}\) WTH A PERTH SAND PENETROMETER (AS1289.6.3.3)
FOR COHETVEIGTAVELSITKS MNMM 6 BLOWS OVER 150 mm

FOOTING HAS BEEN DESIGNED FOR CLASS 'A' AND 'S' SOIL TO
AS2870 \({ }^{2} 2870\)
\(\square\) FOOTING LAYOUT


PRECAST CONCRETE SLAB BY TOHERS DESIGNED FOR 3KPA, 4.5KN MPOSED FLOOR LOAD


\(\qquad\)

\(\square\) \(\frac{\text { TIE DOWN DETAIL }}{1: 20}\) \(\qquad\)

J004099 Joou099 ISSUED FOR REVIEW PROJECT CLIENT PROJECC
CBH
\({ }_{1}\) DONUT DETAIL
\(\square\)


AUSTRALIA
Sole



PROIECT: SHEET

FOOTING LAYOUT

\section*{PRoJECT ADDRES}

\section*{INGN}

ELECTRICAL \& DATA FIXTURES
300 BGP-01 DOUBLE 10A GENERAL PURPOSE OUTLET
BDO-01 SINGLE COMMUNICATIONS OUTLET R.A54 4 PAIR CAT. 6 UTP
B00.02 TV OUTLET

BPE PHOTOELECTRIC CELL
D. BPI 800 afl ISOLATOR Wall MOUNTED

BSB DISTRBUTIONBOARD
WAL MOUNTED 180OMM AFEL UNLESS NOTED OTHERWISE
boL RECESSED LED LIGHT.
BWL-01 LED BUNKER LIGHT, SCREW FIXED LUMINARY. WALL
MOUNTED.
bwL-02 LED LAMP LIGHT. WALL MOUNTED.
BSW-01 multigang switch
two-way switch
denotes mounting height

TRE-01 60 LTRE BAR FRIDGE
FIRE DETECTION FIXTURES
\begin{tabular}{lll} 
B & BSD & SMOKE DETECTOR \\
-0 & BFE & FIRE EXTINGISHER \\
- & BAB & FIRE ALARM BELL \\
- & BEG & BREAK GLASS UNIT
\end{tabular}

\section*{MECHANICAL FIXTURES}
\begin{tabular}{lll}
\(\square\) & BAC-01 & \begin{tabular}{l} 
SPLTT AIR CONDITIONER UNIT \\
2.5 KW
\end{tabular} \\
\(\square\) & BCU-01 & \begin{tabular}{l} 
AR CONITIONER UNIT \\
2.5 KW
\end{tabular} \\
\(\square\) & BEF-01 & EXHAUST FAN
\end{tabular}


\section*{PLUMBING FIXTURES}
- bFW FLOOR WASTE
© Bhs 160L Hot water SYSTEM

DRAWING TO BE READ IN CONJUNCTION WITH REFLECTED CEILING PLAN \(\qquad\)
REFER TO SERVICES CONSULTANTS DRAWINGS FOR ALL SERVICES
FIXTURES SPECIFICATONS, REQUIREMENTS AND SCHEDUESS.
WIRRG SHALL BE IN ACCORDANCE WITH A.S 3000 A. A. 3008 \&
THE RELEVANT LOCALELECTRICAL AUTHORITY.
CONTRACTORS SHALL BEEORE COMMENCEMENT OF CONSTRUCTION OF
SERVVCES, CHECK ALLSETOUTS AND DIMENSIONS.
.
THE ELECTRRCCLL INSTALLATION MUST COMPLY WITH REQUIREMENTS OF
ASNZS 3000 \& 3008.1
\begin{tabular}{|l|l|l|l|l|}
\hline & & & & \\
\hline A ISSUED FOR REVEW & \\
\hline NO. DESCRIPTION & 14.0.72023 & MV & KP \\
\hline
\end{tabular}

\section*{ELEETMOCD AUSTRALIA}


Nelleal Mits
为
\begin{tabular}{ll} 
PROJECT No:: \\
Joo4099 & PRO \\
PROJECT STATUS & 4P
\end{tabular}
prouect status ISSUED FOR REVIEW PROJECT CLIENT
CBH
PROJECT: SHET

SHEET
ELECTRICAL \& DATA

PROJECT AODRES
GINGIN

D1


\section*{General Arrangement 1:50}

\section*{EQUIPMENT LIST}
1. Table (Supplied by CBH)
2. Chair (Supplied by CBH)
3. Side table (Supplied by CBH)
4. Arm chair (Supplied by CBH)
5. AC Wall mounted unit
6. TV screen (Supplied by CBH)
7. TV cabinet (Supplied by CBH)
8. AC condenser

BUILDING CONSTRUCTION - SHORT SPECIFICATION - Chassis: fabricated structural steel beams; LC100 joists (400c)

BUILDING DESIGN CRITERIA
NCC Class 6 Building
Wind Region A
Climate zone 4
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ COLOUR SCHEDULE } \\
\hline Ext. Cladding: & Paperbark \\
\hline Ext. Cladding (2): & Deep Ocean \\
\hline Doors: & Deep Ocean \\
\hline Door frames: & Deep Ocean \\
\hline Internal Walls: & Embossed White \\
\hline Ceiling: & Mirage Pearl \\
\hline Windows: & Deep Ocean \\
\hline Vinyl: & Blue Bells \\
\hline Cabinetry: & White \\
\hline Benches: & Stainless Steel \\
\hline Blinds: & Charcoal \\
\hline PVC Skirting: & Black \\
\hline Cornice Angle: & White Gloss \\
\hline
\end{tabular}

\section*{CLIENT APPROVAL}
```

```
SIGNATURE
```

```
```

SIGNATURE

```
```

M,

```
```

M,

```


Ceiling Level 2400



A Ceiling Level
2400

0

CBH 2024 Accomodation Project
\[
\begin{aligned}
& \text { Colorbond finish } \\
& 12-14-x 55 \text { Hex head screw drilling screws } \\
& \text { fix } \text { @ each nurlin } 1 \text { ner roof sheet rib }
\end{aligned}
\]
\[
\begin{aligned}
& 12-14-\text { - } 55 \text { Hex head screw dililing scre } \\
& \text { fix @ each purlin } 1 \text { per roof seet rib }
\end{aligned}
\]


CBH 2024 Accomodation Project
COMMON ROOM
TYPICAL SECTION
```

\IINATURE

```
```

\IINATURE

```


BARGE DETAIL
1:10


FLOOR/WALL DETAIL

\(\underset{1: 2}{\text { WINDOW SIDE FIXING DETAIL }}\) 1:2

CBH 2024 Accomodation Project
COMMON ROOM SECTION DETAILS


\(\underset{1: 50}{\text { Elevation A }}\)


Elevation C
1:50


Elevation B
1:50


Elevation D
1:50
\begin{tabular}{l|l|l|l|l|l|l}
\hline \multicolumn{8}{l}{ Window Schedule } \\
\hline Mark & Height & Width & Operation & Details & Colour & Count \\
\hline \multicolumn{9}{l}{} \\
\hline W1 & 1200 & 1156 & \begin{tabular}{l} 
Face-fit \\
sliding
\end{tabular} & \begin{tabular}{l}
2 light; 5mm Clear Toughened; \\
610 mm Aluminium mesh flywire
\end{tabular} & \begin{tabular}{l} 
Deep \\
Ocean
\end{tabular} & 2 \\
\hline
\end{tabular}
\begin{tabular}{l} 
Door Schedule \\
\hline \begin{tabular}{l|l|l|l|l|l|l|l}
\hline Mark & Height & Width & Operation & Details & Colour & Count \\
\hline \multicolumn{9}{l}{} \\
\hline D1 & 2080 & 2110 & \begin{tabular}{l} 
Face-fit \\
sliding
\end{tabular} & \begin{tabular}{l} 
2 light; 6mm clear Toughened; vision motif; \\
Aluminium Mesh Flywire; door handle @1055mm; \\
Screen Handle @1200
\end{tabular} & \begin{tabular}{l} 
Deep \\
Ocean
\end{tabular} & 1 \\
\hline
\end{tabular}
\end{tabular}

CBH 2024 Accomodation Project
Project number Date

\section*{CLIENT APPROVAL}

\(\underset{1: 50}{\text { Wall Layout }}\)

NOTES
All stud/track framing components fixed together using drill point metal screws

A Ceiling Level


East Wall Frame
1:50

Project number Date Drawn by Drawing number Revision

Ceiling Level 2400
- Floor Level

0
\(\qquad\) \(\cdots\)
Ceiling Level 2400

Floor Level


NOTES
- All stud/track framing components fixed together using drill point metal screws

South Wall Frame
1:50


\begin{tabular}{|l|l|l|l|}
\hline TYPE & MARK & DIM (mm) & CNT \\
\hline Custom Orb Paperbark & N1 & 6200 & 2 \\
\hline Custom Orb Paperbark & N2 & 2031 & 4 \\
\hline Custom Orb Paperbark & E1 & 3300 & 4 \\
\hline Custom Orb Paperbark & S1 & 6200 & 4 \\
\hline Custom Orb Paperbark & W1 & 3300 & 4 \\
\hline Barge Flashing (see detail) & B1 & 6600 & 1 \\
\hline Barge Flashing (see detail) & B2 & 3400 & 1 \\
\hline Barge Flashing (see detail) & B3 & 3400 & 1 \\
\hline Easiline Commercial Gutter Deep Ocean & G1 & 6200 & 1 \\
\hline D/Pipe 100x50 Paperbark & DP & 2400 & 2 \\
\hline Monoclad Deep Ocean & R1 & 3380 & 9 \\
\hline Corner Flashing (see detail) & F1 & 2700 & 4 \\
\hline Astragal 100x50 Paperbark & & & 6 \\
\hline Nozzle/Pop 100x50 Zincalume & & & 2 \\
\hline Easiline gen Pur Bracket (gal) & & & 7 \\
\hline Easiline Gutter Stop End (Left) & & & 1 \\
\hline Easiline Gutter Stop End (Right) & & & 1 \\
\hline
\end{tabular}

\(\qquad\)



\section*{COLORBOND® CLASSIC COLOUR CHARTS}




\section*{Report on}

\title{
GEOTECHNICAL STUDY AND PAVEMENT DESIGN, PRELIMINARY ACID SULFATE SOIL AND CONTAMINATION STUDY PROPOSED ACCOMMODATION SITE PART LOT 80, GREAT NORTHERN HIGHWAY MILING
}

\section*{Submitted to:}

Cooperative Bulk Handling (CBH) Ltd
Level 6, 240 St Georges Terrace
PERTH WA 6000

\section*{TABLE OF CONTENTS}
1. Introduction .....  1
2. Site Description and Proposed Development .....  1
3. Project Objectives ..... 2
4. Fieldwork .....  .2
5. Laboratory Testing .....  5
5.1 Geotechnical .....  .5
5.2 Environmental ..... 5
6. Site Conditions .....  .6
6.1 Geology ..... 6
6.2 Subsurface Profile .....  .6
6.3 Groundwater ..... 6
6.4 Contaminated Sites .....  .6
6.5 Acid Sulfate Soils .....  .7
7. Geotechnical Assessment ..... 7
7.1 Geotechnical Issues ..... 7
7.2 Site Classification .....  .7
7.3 Construction Issues ..... 8
7.4 Site Preparation 8
7.5 Excavation and Slopes ..... 9
7.6 Compaction ..... 9
7.7 Approved Fill ..... 10
7.8 Drainage and Stormwater Disposal ..... 10
8. Preliminary Pavement Designs ..... 11
8.1 General ..... 11
8.2 Subgrade Evaluation ..... 11
8.3 Design Traffic ..... 11
8.4 Summary of Pavement Design ..... 11
8.5 Seal Design and Surfacings ..... 12
8.5.1 Surface Preparation and Priming ..... 12
8.5.2 Preliminary Seal Design below Asphalt Surfacing ..... 12
8.5.3 Surfacing Selection ..... 13
9. Pavement Specification and Construction ..... 13
9.1 Fill Materials ..... 13
9.2 Moisture Conditioning, Compaction and Dryback ..... 13
9.3 Pavement Drainage ..... 14
10. Environmental Assessment ..... 14
10.1 Regulatory Assessment Criteria ..... 14
10.2 Results ..... 15
10.3 Summary ..... 15
11. Closure ..... 16
TABLES
Table 1: Summary of Tests .....  3
Table 2: Summary of DCP Test Results .....  .4
Table 3: Constant Head Permeability Test Results .....  .4
Table 4: Summary of Laboratory Test Results .....  5
Table 5: Summary of Site Classifications (AS 2870-2011) .....  .7
Table 6: Summary of Pavement Design ..... 12
Table 7: Preliminary Seal Design below Asphalt Surfacing ..... 13
Table 8: Compaction and Dryback Requirements ..... 13
Table 9: Analytical Results Summary ..... 15

\section*{FIGURES}

FIGURE 1: SITE AND LOCATION PLAN

\section*{APPENDICES}

22 August 2023
APPENDIX A: SITE PHOTOGRAPHS

APPENDIX B: TEST PIT REPORTS
APPENDIX C: CONSTANT HEAD PERMEAMETER TEST RESULTS
APPENDIX D: GEOTECHNICAL LABORATORY TEST RESULTS

APPENDIX E: ENVIRONMENTAL LABORATORY TEST RESULTS
APPENDIX F: ANALYTICAL TEST RESULTS
APPENDIX G: UNDERSTANDING YOUR REPORT

\section*{1. INTRODUCTION}

This report presents the outcomes of Galt Geotechnics' (Galt's) geotechnical study, pavement design and preliminary acid sulfate soils (ASS) and contamination study for the proposed accommodation site on Part of Lot 80 (\#18201) Great Northern Highway in Miling ("the site").

The location of the site relative to the surrounding area is shown on Figure 1.

\section*{2. SITE DESCRIPTION AND PROPOSED DEVELOPMENT}

Lot 80 is roughly rectangular in shape and covers a plan area of about 1.4 hectares. At the time of investigation, a former church (Holy Rosary Catholic Church) occupied the north-east part of site with relatively open cultivated land across the balance of the Lot. The church building is in a worn condition with significant cracking and chipping evident on the exterior faces, due to its age and possible settlement (refer Appendix A, Site Photographs).

A firebreak (access track) is present along part of the northern boundary and along the eastern boundary of site. Publicly available topographical mapping indicates that the current ground level is around RL 256 m AHD.

The proposed accommodation site is located on the southern part of Lot 80 as shown below.


Inline Image 1: Proposed Accommodation Site
We understand the site is to be developed with proposed accommodation units, a car park, and a drainage basin. We also note that on-site effluent disposal is proposed by way of leach drains.

We assume that no significant cut or fill is proposed and that proposed accommodation structures will be supported on shallow pad/strip footings.

\section*{3. PROJECT OBJECTIVES}

The objectives of the study were to:
( assess subsurface soil and groundwater conditions across the accommodation site;
\& assess the site classification in accordance with AS2870 (2011) "Residential Slabs and Footings";
* provide site preparation guidelines, including compaction criteria and approved fill reuse taking into account CBH Specifications;
( provide recommendations for excavations and slopes;
( assess the hydraulic conductivity of the soils at the site and advise on on-site drainage; and
( provide pavement, seal and surfacing design for the access road and carpark.

\section*{Preliminary Acid Sulfate Soils and Contamination Study}
( conduct a preliminary assessment of ASS conditions at the site;
\& assess the nature and extent of soil contamination at the site;
( make recommendations for further investigation and/or remediation (if required).

\section*{4. FIELDWORK}

Fieldwork was carried out on 31 July and 1 August 2023 and comprised:
( a walkover and inspection of the site;
* excavation of test pits (TP) at 9 locations (TP01 to TP09), extending to:
- a target depth of 1.5 m across the proposed carpark and access road (TP01 to TP03);
- refusal, at depths ranging from 1.75 m to 2.5 m across the proposed accommodation units (TP04 to TP06);
- a depth of 1.5 m at the proposed basin (TPO7); and
- depths of 1.75 and 1.5 m respectively at the proposed leach drains (TP08 and TP09).
( Dynamic Cone Penetrometer (DCP) testing adjacent select test pits (TP01-TP07) extending to depths ranging from refusal at 0.6 m to a target depth of 1.0 m ;
( constant head permeability testing using a Guelph permeameter at:
( a depth of 0.63 m at the proposed basin location (PO3);
\& depths of 0.53 m and 0.50 m respectively, at the proposed leach drains (P01 and P02)
( collection of soil samples at 0.5 m intervals until the termination of each borehole.

\section*{General}

Fieldwork was conducted by a geotechnical engineer from Galt in general accordance with AS1726 (2017) "Geotechnical Site Investigations".

Our engineer positioned the tests using a handheld GPS accurate to about 5 m in the horizontal plane. The engineer conducted the site walkover, observed the test pitting, logged the materials encountered, performed the field tests and collected representative soil samples for laboratory testing.

The approximate test locations are shown on Figure 1. Photographs of the site taken during the inspection are presented in Appendix A, Site Photographs. Details of the test pits are shown in Table 1: Summary of Tests.

Table 1: Summary of Tests
\(\left.\begin{array}{|c|c|c|c|c|}\hline \text { Test } \\
\text { Name }\end{array} \begin{array}{c}\text { Description of Proposed } \\
\text { Development }\end{array} \begin{array}{c}\text { Test } \\
\text { Depth } \\
\text { (m) }\end{array} \quad \begin{array}{c}\text { Reason for } \\
\text { Termination }\end{array}\right]\)\begin{tabular}{c} 
Stratigraphy
\end{tabular}

Notes:
1. TP - Test Pit
2. Groundwater was not encountered at test locations
3. Refusal occurred on cemented strata

\section*{Test Pits}

Test pits were excavated using an 8-tonne JCB 3CX tractor-mounted backhoe equipped with a 0.45 m wide toothed bucket. The backhoe was supplied and operated by ANH Contracting. Test pit reports, including a list of notes and abbreviations and the method of soil description used on the reports are included in Appendix C, Test Pit Reports. A photograph of the spoil recovered from each test pit is also included on each report.

\section*{Dynamic Cone Penetrometer (DCP) Tests}

DCP tests were carried out in accordance with AS 1289.6.3.2, with blow counts recorded in 100 mm intervals. The tests were conducted adjacent test pits TP01 to TP07. The results of the tests are presented in Table 2: Summary of DCP Test Results.

Table 2: Summary of DCP Test Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Location: & TP01 & TP02 & TP03 & TP04 & TP05 & TP06 & TP07 \\
\hline Depth (mm) & \multicolumn{7}{|c|}{ No of Penetrometer Blows per 100 mm Depth Interval } \\
\hline \(0-100\) & 2 & 3 & 2 & 3 & 5 & 2 & 4 \\
\hline \(100-200\) & 2 & 2 & 3 & 5 & 4 & 6 & 4 \\
\hline \(200-300\) & 3 & 6 & 5 & 6 & 3 & 5 & 6 \\
\hline \(300-400\) & 4 & 6 & 6 & 10 & 5 & 4 & 6 \\
\hline \(400-500\) & 4 & 8 & 5 & 11 & 5 & 6 & 6 \\
\hline \(500-600\) & 5 & 10 & 7 & \(12+\mathrm{R}\) & 7 & 6 & 7 \\
\hline \(600-700\) & 4 & \(13+\mathrm{R}\) & 7 & & 9 & 6 & 11 \\
\hline \(700-800\) & 4 & & 6 & & \(13+\mathrm{R}\) & 6 & \(15+\mathrm{R}\) \\
\hline \(800-900\) & 5 & & 8 & & & 8 & \\
\hline \(900-1000\) & 6 & & \(10+\mathrm{R}\) & & & 12 & \\
\hline
\end{tabular}

Note: R indicates practical refusal of the penetrometer

\section*{Constant Head Permeability Tests}

Constant head permeability tests were conducted using a Guelph Permeameter at locations where drainage basins / leach drains are likely to be situated. The testing was generally conducted in accordance with Appendix G of AS1547 (2012) "On-site domestic wastewater management". The test results are summarised in Table 3.

Table 3: Constant Head Permeability Test Results
\begin{tabular}{|c|c|c|c|c|c|}
\hline Test Location & \begin{tabular}{c} 
Depth of Test \\
\((\mathbf{m})\)
\end{tabular} & \begin{tabular}{c} 
Soil Profile \\
(AS1726-2017)
\end{tabular} & Head (m) & \(\mathbf{k}^{\mathbf{1}(\mathbf{m} / \text { day) }}\) & Soil Category \(^{\mathbf{3}}\) \\
\hline P01 & 0.53 & Sandy CLAY & 0.31 & 0.01 & 5 \\
\hline P02 & 0.50 & Sandy Gravelly CLAY & 0.26 & 0.01 & 5 \\
\hline P03 & 0.63 & Sandy CLAY & 0.35 & 0.01 & 5 \\
\hline
\end{tabular}

Notes: 1. k-saturated hydraulic conductivity
2. Groundwater not encountered at test locations
3. Soil category is as per Table L1 of AS1547-2012.

\section*{Soil Sampling}

Environmental soil samples were collected from the boreholes in accordance with the following Australian Standards (AS) and guidelines:
( AS 4482.1:2005 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil Part I NonVolatile and Semi Volatile Compounds;
( AS 4482.2:1999 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil Part 2 Volatile Compounds;
( Department of Environment Regulation (DER) (2015) Identification and Investigation of Acid Sulfate Soils and Acidic Landscapes;
( National Environment Protection Council (NEPC) (2013) National Environmental Protection (Assessment of Site Contamination) Measure (herein referred to as NEPM 2013).

Soil samples were collected at 0.25 m intervals from each borehole using a new pair of disposable nitrile gloves. All soil samples were collected in laboratory supplied glass jars or bags and stored on ice during fieldwork and transport to the laboratory to ensure that they arrived intact and at the appropriate temperature to ensure sample preservation.

\section*{5. LABORATORY TESTING}

\subsection*{5.1 Geotechnical}

Geotechnical laboratory testing was conducted by Western Geotechnical and Laboratory Services (WGLS) in their NATA accredited laboratory. The testing comprised determination of:
( particle size distribution on 5 samples;
( Atterberg limits and linear shrinkage on 5 samples;
( dry density-moisture content relationship using Modified compactive effort on 1 sample; and
( soaked California Bearing Ratio (CBR) on 1 remoulded sample.
The laboratory test certificates are presented in Appendix \(D\) along with the test methods followed. A summary of the test results is presented in Table 4.

Table 4: Summary of Laboratory Test Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Test \\
Location
\end{tabular} & Sample Depth (m) & \[
\begin{aligned}
& \text { AS1726 (2017) } \\
& \text { Soil Class }
\end{aligned}
\] & \% Gravel & \[
\begin{gathered}
\% \\
\text { Sand }
\end{gathered}
\] & \% Fines & \[
\begin{gathered}
\text { LL } \\
\text { (\%) }
\end{gathered}
\] & \[
\begin{gathered}
\text { PI } \\
(\%)
\end{gathered}
\] & \[
\begin{aligned}
& \text { LS } \\
& \text { (\%) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MMDD } \\
& \left(\mathrm{t} / \mathrm{m}^{3}\right)
\end{aligned}
\] & \begin{tabular}{l}
OMC \\
(\%)
\end{tabular} & \[
\begin{aligned}
& \text { CBR } \\
& \text { (\%) }
\end{aligned}
\] & \begin{tabular}{l}
CBR \\
Swell \\
(\%)
\end{tabular} \\
\hline TP03 & 0.4-0.7 & Sandy CLAY (ClCH) & 16 & 44 & 40 & 50 & 32 & 13.5 & 1.89 & 14.5 & 4.5 & 2.5 \\
\hline TP05 & 1.0-1.3 & Sandy CLAY (CI) & 10 & 50 & 40 & 44 & 28 & 11.0 & & & & \\
\hline TP06 & 2.2-2.5 & Sandy CLAY (CI) & 6 & 39 & 55 & 47 & 29 & 11.5 & & & & \\
\hline TP08 & 0.45-0.65 & Sandy Gravelly CLAY (CH) & 34 & 29 & 37 & 54 & 36 & 15.0 & & & & \\
\hline TP09 & 0.5-0.7 & Sandy CLAY (CI) & 2 & 50 & 48 & 45 & 28 & 10.5 & & & & \\
\hline \multicolumn{13}{|l|}{\begin{tabular}{lll} 
LL - Liquid Limit & PI - Plasticity Index & LS - Linear Shrinkage \\
MMDD - Modified Maximum Dry Density & OMC - optimum moisture content \\
CBR - California Bearing Ratio, remoulded to \(92 \%\) MMDD and subjected to 6.75 kg surcharge, 4 -day soak \\
Grey Shaded - Not Tested
\end{tabular}} \\
\hline
\end{tabular}

\subsection*{5.2 Environmental}

Selected soil and groundwater samples were analysed by NATA accredited laboratories for a range of contaminants of potential concern (COPC) comprising the following:
( heavy metals;
\& total recoverable hydrocarbons (TRH);
\& benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN);
\& polycyclic aromatic hydrocarbons (PAH); and
* asbestos ID (AS 4964).

\section*{Acid Sulfate Soils}

Laboratory analysis was undertaken on selected soil samples using the chromium reducible sulfur (CRS) method which provides acid base accounting and quantification of potential acid generation. The selection of samples for laboratory analysis was based on soil type and the results of field testing. The field test results are summarised in Table A1 at the end of the text.

All laboratory analysis was undertaken using NATA-accredited methods of analysis. Laboratory certificates of analysis are presented in Appendix E and the results are discussed in Section 10.2.

\section*{6. SITE CONDITIONS}

\subsection*{6.1 Geology}

The Moora sheet of the \(1: 250,000\) scale Geological series map indicates that the area is underlain by Colluvium which is broadly described as rock fragments (presumably gravelly soil). Colluvial sand is also shown close to the site.

Our investigation found the subsurface conditions comprise clayey soils (clayey sand and sandy clay) overlying possible cemented soils/rock at depth.

\subsection*{6.2 Subsurface Profile}

The typical soil profiles can be described as follows:

\section*{TP01 and TP02 (Access Road)}
( FILL: Clayey SAND (SC): fine to coarse grained, brown, approximately 12-20\% low plasticity fines, trace organic fines, trace rootlets, trace gravel of building rubble, dry, typically 200 mm thick; overlying
( Sandy CLAY (CI): medium plasticity, brown becoming pale brown mottled white with depth, with fine to coarse grained sand, with fine to coarse grained gravel, dry, extending to a depth of 1.5 m .

TP03 to TP09 (Accommodation Arae, Leach Drains and Basin)
( TOPSOIL: Clayey SAND (SC)/Sandy CLAY (CI-CH): fine to coarse grained, brown, with low to medium plasticity fines, trace fine grained gravel, trace organic fines, trace rootlets, typically dry, extending to depths ranging from 0.1 m to 0.2 m ; overlying
( Sandy CLAY (CI / CI-CH): medium and high plasticity, brown becoming brown mottled red with depth, with about 40-50\% fine to coarse grained sand, trace to with fine to medium grained gravel, dry, extending to the typical investigated depth of 2.5 m .

Notes: 1. A layer of high plasticity Sandy Gravelly CLAY (CH) was noted at location TP08 (approximately 200 mm thick).
Test locations TP05-TP07 presented a thin layer (around 100-200 mm thick) of Clayey SAND (SC) underlying the Topsoil layer.

\subsection*{6.3 Groundwater}

We do not have groundwater information for this site.
Groundwater was not encountered in any of the test pits during our investigation (conducted 31 July and 1 August 2023) to the maximum investigated depth of 2.5 m . Notwithstanding this, we expect that storm-water runoff perches on the low permeability clayey soils particularly following periods of significant rainfall particularly during winter.

\subsection*{6.4 Contaminated Sites}

The publicly available DWER contaminated sites database was searched for known contaminated sites (within or adjacent the study area) classified as:
\& contaminated - restricted use;
* contaminated - remediation required; and
* remediated for restricted use.

A review of the database indicates that the site is not listed as a contaminated site.

\subsection*{6.5 Acid Sulfate Soils}

The site is shown on the DWER on-line acid sulfate soils (ASS) risk mapping databases as having a low risk of ASS occurrence. We note that there is an area mapped as having a high risk of ASS approximately 400 m north-west of the site.

\section*{7. GEOTECHNICAL ASSESSMENT}

\subsection*{7.1 Geotechnical Issues}

The key geotechnical issues at the site are:
t the potential for shallow / perched groundwater to develop over the natural soils after periods of prolonged rainfall;
( poor subgrade CBR for pavements;
( relatively poor site class (AS2870); and
\& difficulty in achieving suitable compaction in clayey soils without careful moisture conditioning.

\subsection*{7.2 Site Classification}

Site classifications in accordance with AS2870-2011 "Residential Slabs and Footings" are summarised in Table 5, Summary of Site Classifications (AS 2870-2011).

Table 5: Summary of Site Classifications (AS 2870-2011)
\begin{tabular}{|c|l|c|}
\hline Class & \multicolumn{1}{|c|}{ Description } & \begin{tabular}{c} 
Characteristic Surface \\
Movement ( \(\mathbf{y}_{\mathrm{s}}\) )
\end{tabular} \\
\hline A & Most sand and rock sites with little or no ground movement from moisture change & \begin{tabular}{c} 
Not Defined \\
(typically <5 mm)
\end{tabular} \\
\hline S & \begin{tabular}{l} 
Slightly reactive clay sites with only slight ground movement from moisture \\
changes \\
Moderately reactive clay sites, which may experience moderate ground \\
movements from moisture change
\end{tabular} & \(20-20 \mathrm{~mm}\) \\
\hline M & -40 mm \\
\hline H1 & \begin{tabular}{l} 
Highly reactive sites, which may experience high ground movements from \\
moisture change
\end{tabular} & \(40-60 \mathrm{~mm}\) \\
\hline H2 & \begin{tabular}{l} 
Highly reactive sites, which may experience very high ground movements from \\
moisture change
\end{tabular} & \(60-75 \mathrm{~mm}\) \\
\hline E & \begin{tabular}{l} 
Extremely reactive sites, which may experience extreme ground movements from \\
moisture change
\end{tabular} & \(>75 \mathrm{~mm}\) \\
\hline P & \begin{tabular}{l} 
Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine \\
subsidence; collapsing soils; soils subject to erosion; reactive sites subject to \\
abnormal moisture conditions or sites which cannot be classified otherwise
\end{tabular} & Not Defined \\
\hline
\end{tabular}

We have assessed the site classification in accordance with AS2870 (2011) "Residential Slabs and Footings". We consider that a site classification of "Class \(\mathrm{M}^{\prime \prime}\) would apply for the site. This is due to the presence of shallow medium plasticity Sandy CLAY. Footings and slabs may be designed in accordance with AS2870-2011 for a "Class M" site with a maximum bearing pressure of 100 kPa . If higher bearing pressures are required, we must be consulted.

The above assumes that the preliminary site preparation guidelines in Section 7.3 are followed.

Note: Footing and slab details in AS 2870-2011 are for single or double storey residential structures supported on shallow footings with a maximum bearing pressure of 100 kPa . This must be taken into account by the structural designers.

\subsection*{7.3 Construction Issues}

Based on our constant head permeability tests, we note the hydraulic conductivity of the shallow clayey soils is very low and that storm-water run-off may pond on or near the surface after significant rainfall events. This may cause difficulties during construction, including:
( heaving and rutting of saturated clayey soils when trafficked; and
softening of silty/clayey soils if water ponds at the base of excavations.
We therefore recommend that earthworks are conducted during the drier months (preferably early summer immediately after the harvest season), although mitigating measures will still be required to limit exposure and excessive drying out of the reactive clayey soils.

If earthworking in wet weather is unavoidable, a capping layer of say 150 mm approved gravel fill should be placed in critical areas to provide a working platform and to reduce the risk of subgrade softening and/or rutting.

Any excavated wet clayey soils may require stockpiling and allowing time to dry to a lower moisture content to allow for placement and compaction. Lime stabilisation of clayey soils may also be considered if earthworks in wet clay is unavoidable.

\subsection*{7.4 Site Preparation}

The following site preparation measures are required prior to construction of buildings/structures, including on-ground slabs, shallow footings, retaining walls and pavements:
( Remove topsoil and vegetation, including grubbing out of roots. We expect that a 100 mm strip should be generally adequate however the topsoil strip must be deep enough to remove all roots. Holes formed by the removal of trees (present near the southern part of site) will need to be backfilled with suitably compacted approved clayey fill.
( Where required, conduct excavations to the required levels using safely battered slopes in accordance with Section 7.5.
( Scarify, moisture condition and compact exposed soils to a depth of 0.3 m in accordance with Section 7.6.
( If rock (or cemented zones) is encountered, over-excavate to a minimum depth of 0.15 m below the design subgrade level and backfill with approved, compacted granular fill (Section 7.7).
( Any areas that do not respond to compaction must be over-excavated and replaced with approved compacted fill (Section 7.7). Clayey soils that are over-excavated must be replaced with approved clayey fill to prevent stormwater run-off infiltrating, collecting and saturating/softening materials in the base of backfilled excavations.
( Moisture condition, place and compact approved fill (Section 7.7) in layers no greater than 0.3 m loose thickness. Each layer must be placed and compacted to achieve the minimum required densities in Section 7.6

Notes: 1. Clay / clayey soils will be difficult to compact if not moisture conditioned to near its optimum moisture content. As discussed in Section 7.3, earthworks should be considered during the dryer summer months.
2. Any clayey soil horizons must be graded to drain. A minimum grade of \(1 \%\) is recommended for drainage.

\subsection*{7.5 Excavation and Slopes}

Due to cemented ground conditions, test pits at the location of the proposed accommodation units (TP04-TP06) encountered refusal at depths ranging from 1.75 m to 2.5 m . Based on this, we consider that excavation to a nominal depth of up to 2.0 m should be possible with a large excavator ( 10 tonne or larger equipped with a rock bucket). We recommend allowance for a hydraulic rock breaker to facilitate excavation below 2.0 m .

Excavations in clayey soils above the water table must be battered back to slope angles of \(1 \mathrm{~V}: 1 \mathrm{H}\) for temporary slopes and \(1 \mathrm{~V}: 2 \mathrm{H}\) for permanent slopes.

Surcharges (such as plant and soil stockpiles) must not be placed at or near the crest of excavations. Even at these slope angles erosion and rilling may occur.

A geotechnical engineer must be consulted where there is any doubt regarding the stability or safety of unsupported excavations.

\subsection*{7.6 Compaction}

Imported and site derived fill must be moisture conditioned to within \(2 \%\) of optimum moisture content (OMC) and compacted to a minimum dry density ratio (DDR) as determined in accordance with AS1289.5.2.1 of:
( 92\% MMDD (modified maximum dry density) for clayey embankment foundations and/or fill; and
( \(95 \%\) MMDD for any granular foundations and imported granular fill.
Compaction control must be undertaken with a nuclear density gauge (NDG) in accordance with AS1289.5.8.1 and adopting the test frequencies outlined in CBH TS10B Construction Specification. Below structures (i.e., buildings), we recommend testing to a minimum depth of 0.3 m :
( at each pad footing location;
* at 5 m centres below strip footings;
\& at one location below the base slab for the auger pit;
( on a grid of 10 m centres below other on-ground slabs.

Testing below pavements is discussed in Section 9.
Over-excavation and replacement of loose/soft materials must be done where the minimum dry density ratio cannot be achieved.

Granular fill (imported granular fill, silty sand, sandy gravel, silty gravelly sand) must be placed and compacted in layers no greater than 0.3 m loose thickness.

Clayey fill (clayey sand, sandy clay or clay) must be placed and compacted in layers no greater than 0.3 m loose thickness where required, although we recommend against re-use of this material if it can be avoided.

Each layer must be compacted by suitable compaction equipment, and carefully controlled to ensure even compaction over the full area and depth of each layer.

Large compaction equipment (self-propelled vibrating rollers, etc.) must not be used within 2 m behind retaining walls. Hand compaction plant must be used in this instance.

\subsection*{7.7 Approved Fill}

The following requirements apply to approved fill materials used in the earthworking of the site for structures and pavements.

Imported granular fill must comply with the CBH TS10B Construction Specification Appendix E, E. 1 Requirements. We can review the suitability of proposed fill sources that do not conform to TS10B if required.

Any organic rich materials must not be used.
Re-use of in situ clayey soils is generally not recommended due to issues with saturation, softening and shrink-swell movements from winter construction, particularly in low lying areas with poor drainage. However, we note that some clay backfilling may be required where there are low points or excavations made into the clayey soils.

Notwithstanding the above, we note that:
( Any low points or excavations made into the clayey soils must be backfilled with similar clayey soils (not granular fill) and graded to ensure storm-water run-off drains away from structures/pavements.
* Granular soils must not form the slopes or bases of drains due to risk of erosion unless approved by CBH.

Note that abrupt changes in subgrade support must be avoided to reduce the risk of differential movements. We must therefore review the proposed fill materials and filling profile prior and/or during construction to confirm the suitability of the approach.

Where there is any doubt about the materials, a geotechnical engineer must be engaged to inspect and comment on the suitability of proposed fill materials.

\subsection*{7.8 Drainage and Stormwater Disposal}

Our tests at the proposed drainage basin and proposed leach drain areas indicate that the upper in situ clayey soils have a constant head hydraulic conductivity in the range of \(0.01 \mathrm{~m} /\) day (refer to Table 3).

Based on the above, we the clayey soils below the site surface have a very low permeability. As such, we recommend that the subsurface soils are modelled as effectively impermeable.

We note that stormwater will likely pond on the surface during the wetter parts of the year. This may cause difficulties during construction including:
(6) heaving and rutting of saturated clayey soils when trafficked; and
( softening of clayey soils when water is allowed to pond at the base of excavations.
We therefore recommend that:
( earthworks are conducted during the summer months;
\& clayey horizons and finished pavements are shaped to promote positive water run-off away from pavements and structures; and
subsoil drains are used to direct subsurface water away from pavement and structures where required.

\section*{8. PRELIMINARY PAVEMENT DESIGNS}

\subsection*{8.1 General}

We have provided a preliminary flexible pavement design for the light duty access roads in general accordance with the following design guides:
( Austroads (2012) Guide to Pavement Technology Part 2 - Pavement Structural Design.
( Main Roads Western Australia (MRWA, 2013), Engineering Road Note 9.

\subsection*{8.2 Subgrade Evaluation}

The subgrade typically comprises low and medium plasticity clayey sand/sandy clay.

We consider that a subgrade design CBR of 5\% is appropriate where:
( the site preparation guidelines in Section 7.4 followed; and
\& appropriate drainage control measures have been implemented.
We highlight that the 4-day soaked CBR (on test) indicates a CBR swell of 2.5\%. MRWA Engineering Road Note 9 (ERN9) recommends the following minimum cover of inert material over reactive subgrades:
\[
\begin{array}{lll}
\text { \& } & \text { Swell }>2.5 \% \text { to } \leq 5.0 \% \text { : } & 600 \mathrm{~mm} \text { cover } \\
\text { Swell } \geq 0.5 \% \text { to } \leq 2.5 \% \text { : } & 150 \mathrm{~mm} \text { cover }
\end{array}
\]

The preliminary thickness design provided assumes that the swell is not greater than \(2.5 \%\). We recommend that additional laboratory testing is undertaken prior to finalising the pavement design to verify that this is the case. Failure to provide sufficient cover over reactive materials may lead to shape loss and shrinkage cracking at the pavement surface. Alternatively, reactive subgrades may be treated with lime to reduce their plasticity and shrink-swell potential.

\subsection*{8.3 Design Traffic}

We have not been provided with design traffic information for the pavements. However, based on our experience with similar light duty pavements, we consider that a design traffic of \(9 \times 10^{4}\) ESA over a 25 year design period is appropriate for the pavement. This design traffic allows for about 5 heavy vehicle movements per day over 25 years.

We require that this design traffic assumption is reviewed and confirmed as acceptable.

\subsection*{8.4 Summary of Pavement Design}

We provide the following pavement design based on the assumptions made:

Table 6: Summary of Pavement Design
\begin{tabular}{|c|c|c|c|}
\hline Pavement Layer & \begin{tabular}{c} 
Minimum \\
CBR (\%)
\end{tabular} & Design Thickness (mm) & Material Description and Specification \\
\hline Wearing Surface & N/A & 30 & \begin{tabular}{c}
10 mm dense graded asphalt \\
Class 170 bitumen \\
IPWEA/AAPA (2016)
\end{tabular} \\
\hline Seal & N/A & Nominal & \begin{tabular}{c} 
Prime and 7 mm CRS170/60 seal \\
MRWA Specifications 503 and 511
\end{tabular} \\
\hline Basecourse & 80 & 100 & \begin{tabular}{c} 
Imported Gravel Fill \\
(CBH TS10B Appendix E3) \\
(Min CBR 80\%)
\end{tabular} \\
\hline Subbase & 50 & 200 & \begin{tabular}{c} 
Imported Sub-base Gravel Fill \\
(CBH TS10B Appendix E2) \\
(Min CBR 50\%)
\end{tabular} \\
\hline Subgrade & 5 & Semi-infinite & \begin{tabular}{c} 
Clayey Sand/Sandy CLAY
\end{tabular} \\
\hline
\end{tabular}

\subsection*{8.5 Seal Design and Surfacings}

\subsection*{8.5.1 Surface Preparation and Priming}

Prior to sealing, the basecourse surface must be compacted and dried back to produce a dense, evenly textured, tightly bound surface and swept with a rotary broom or similar to remove any surface dust or loose particles. The surface must not show evidence of laminations or ravelling before and after brooming.

The surface must be primed to waterproof the granular base and provide a strong bond between the basecourse, seal and surfacing. We recommend priming in accordance with MRWA Specification 503 using a prime comprising 40\% Class 170 bitumen/60\% Medium curing cutter oil applied at a rate of \(0.6 \mathrm{~L} / \mathrm{m}^{2}\).

The prime must be applied in dry and warm conditions, with no rainfall forecast within the following 3 days. The prime must be allowed to cure for 3 to 7 days prior to application of the surfacing (subject to assessment of site conditions).

Notwithstanding the given nominal application rates, the prime must be adjusted:
( to ensure a uniform and even coating;
( to account for the porosity of the pavement surface;
\& to account for the pavement moisture content and prevailing conditions; and
\& if the seal or surfacing is applied immediately after the primer.

\subsection*{8.5.2 Preliminary Seal Design below Asphalt Surfacing}

The following presents a prime and preliminary seal design below the asphalt assuming a 7 mm single/single sprayed seal with a cationic rapid setting Class \(17060 \%\) bitumen emulsion (CRS170/60). The design may need to be adjusted to suit the aggregate used and the site conditions.

Table 7: Preliminary Seal Design below Asphalt Surfacing
\begin{tabular}{|c|c|c|c|c|}
\hline Seal Type & \begin{tabular}{c} 
Aggregate \\
Size (mm)
\end{tabular} & Binder & \begin{tabular}{c} 
Total Binder \\
Rate \\
\(\left(@ 15^{\circ} \mathrm{C}\right) \mathrm{L} / \mathrm{m}^{2}\)
\end{tabular} & \begin{tabular}{c} 
Aggregate \\
Spread Rate \\
\(\left(\mathrm{m}^{2} / \mathrm{m}^{3}\right)\)
\end{tabular} \\
\hline Prime & - & \begin{tabular}{c} 
Class 170 Cutback bitumen \\
MRWA Specification 503
\end{tabular} & 0.6 & - \\
\hline Single/single seal & 7 mm & CRS170/60 emulsion & 1.3 & \(150-200\) \\
\hline
\end{tabular}

\subsection*{8.5.3 Surfacing Selection}

We recommend that 10 mm dense graded asphalt with Class 170 bitumen is used for the surfacing.
IPWEA/AAPA (2016) Specification must be used for the mix design. The asphalt job mix must be trialled and laboratory tested to ensure it conforms with the specification.

The asphalt must be compacted to a minimum characteristic density ratio of \(94 \%\) of the 50 blow Marshall Density as outlined in the IPWEA/AAPA (2016) Specification.

\section*{9. PAVEMENT SPECIFICATION AND CONSTRUCTION}

\subsection*{9.1 Fill Materials}

Imported fill materials used for the construction of pavements must meet the requirements of CBH Group Construction Specification TS10B - Civil Earthworks, Roads and Drainage and the design requirements outlined in Section 8.4

\subsection*{9.2 Moisture Conditioning, Compaction and Dryback}

All granular pavement layers must be suitably, moisture conditioned compacted and dried back. Inadequate dry-back of pavement materials is often a cause of premature failures. Compaction and dry back requirements are provided in Table 8.

Table 8: Compaction and Dryback Requirements
\begin{tabular}{|c|c|c|c|}
\hline Pavement Layer & Moisture Content for Compaction & Minimum DDR & Maximum Moisture Content for Dryback \\
\hline Base-course & \multirow{4}{*}{90-110\% of MOMC} & 98\% MMDD & 70\% of MOMC \\
\hline Sub-base & & 98\% MMDD & 85\% of MOMC \\
\hline \begin{tabular}{l}
Subgrade \\
(granular)
\end{tabular} & & 95\% MMDD & 85\% of MOMC \\
\hline Subgrade (cohesive) & & 92\% MMDD & Target 80-100\% MOMC No not allow dryback below 80\% MOMC \\
\hline
\end{tabular}

Note: MOMC - Modified Optimum Moisture Content
Compaction control of pavement materials and subgrades must be undertaken in accordance with CBH TS10B Construction Specification - Civil Earthworks, Roads and Drainage.

\subsection*{9.3 Pavement Drainage}

The pavement designs assume that suitable drainage control measures have been implemented to prevent moisture ingress into the pavement and subgrade.

It is therefore essential that the pavement surface and subgrade is shaped to drain away from pavements and other structures. Stormwater run-off that infiltrates the pavements and ponds on the clayey subgrade will cause it to soften and will adversely impact pavement performance. Subsoil drainage should be considered in poorly drained areas, particularly in the vicinity of cuttings where groundwater may be intercepted.

\section*{10. ENVIRONMENTAL ASSESSMENT}

\subsection*{10.1 Regulatory Assessment Criteria}

\section*{Chemical Contaminants and Asbestos}

Regulatory assessment criteria for soil and groundwater analysis were selected taking into account the current land use, proposed use as an accommodation facility, applicable soil beneficial uses and consistency with relevant published guidelines including National Environmental Protection Council (NEPC) (2013) National Environmental Protection (Assessment of Site Contamination) Measure.

Soil samples were specifically assessed against the following:
( health investigation levels - residential (HIL A); and
\& health screening levels - residential (HSL A).

\section*{Acid Sulfate Soils}

Typically, field pH values ( \(\mathrm{pHF}_{\mathrm{F}}\) ) of \(<3\) to 4 indicate the presence of ASS, thus indicating acids in the soil profile have oxidised.

The presence of unoxidized acids or potential acid sulfate soil (PASS) is indicated if:
( A strong reaction with hydrogen peroxide is observed;
the \(\mathrm{pH}_{\text {fox }}\) is at least 1 pH unit below \(\mathrm{pH}_{\mathrm{F}}\); or
\& the pHFox is \(<3\) to 4 and one or both of the above conditions apply.
The texture based net acidity action criteria presented in the Department of Environment and Regulation (DER) (2015) Identification and Investigation of Acid Sulfate Soils and Acidic Landscapes guideline document specifies a value of \(0.06 \%\) based on the anticipated volume of soil to be disturbed being less than 1,000 tonnes. This value has been adopted for the assessment of net acidity in soils across the site.

\subsection*{10.2 Results}

Soil analytical results are presented in Table 9 and discussed below. Tabulated results and assessment criteria are shown in Appendix F.

Table 9: Analytical Results Summary
\begin{tabular}{|c|c|c|}
\hline Analyte & Results Range & Exceedances \\
\hline \multicolumn{3}{|c|}{Metals} \\
\hline Arsenic & \(<5 \mathrm{mg} / \mathrm{kg}\) & None \\
\hline Cadmium & \(<0.1-0.2 \mathrm{mg} / \mathrm{kg}\) & None \\
\hline Chromium (III+VI) & \(13-35 \mathrm{mg} / \mathrm{kg}\) & None \\
\hline Copper & \(4.9-9.4 \mathrm{mg} / \mathrm{kg}\) & None \\
\hline Lead & \(11-17 \mathrm{mg} / \mathrm{kg}\) & None \\
\hline Mercury & <0.02-0.15 mg/kg & None \\
\hline Nickel & \(2.8-11 \mathrm{mg} / \mathrm{kg}\) & None \\
\hline Zinc & \(9.1-70 \mathrm{mg} / \mathrm{kg}\) & None \\
\hline \multicolumn{3}{|c|}{Hydrocarbons} \\
\hline BTEXN & \(<L^{\text {L }}{ }^{1}\) & None \\
\hline TRH & < LOR & None \\
\hline PAH & < LOR & None \\
\hline \multicolumn{3}{|c|}{Asbestos} \\
\hline Asbestos & Not identified & None \\
\hline \multicolumn{3}{|c|}{Acid Sulfate Soil} \\
\hline Net Acidity & < \(0.02-0.04\) \%S & None \\
\hline pHf & 4.6-9.5 & N/A \\
\hline pHfox & 4.1-9.3 & N/A \\
\hline \(\mathrm{pH} \mathrm{f}^{-} \mathrm{pH} \mathrm{ffox}\) & 0-3.2 & N/A \\
\hline
\end{tabular}

Notes: 1. LOR indicates results were below the laboratory limits of reporting.

\subsection*{10.3 Summary}

\section*{Chemical Contaminants and Asbestos}

The results of the analytical testing indicate that the concentrations of all contaminants of potential concern (COPC) were either below the laboratory limit of reporting (LOR) and/or conformed to the adopted assessment criteria.

\section*{Acid Sulfate Soils}

Net acidity did not exceed the action criterion of \(0.06 \% \mathrm{~S}\) in any of the samples tested. As such, we do not consider that ASS treatment is required for any excavated materials.

\footnotetext{
\({ }^{1}\) LOR indicates that all constituent compounds were below the laboratory limit of reporting.
}

Based on these results, we consider it unlikely that the site presented a risk to human health or the environment in the context of the proposed land use. Furthermore, we consider that the site is suitable for use as an accommodation facility.

\section*{11. CLOSURE}

We draw your attention to Appendix F of this report, "Understanding Your Report". The information provided within is intended to inform you as to what your realistic expectations of this report should be. Guidance is also provided on how to minimise risks associated with groundworks for this project. This information is provided not to reduce the level of responsibility accepted by Galt, but to ensure that all parties who rely on this report are aware of the responsibilities each assumes in so doing.

\section*{GALT GEOTECHNICS PTY LTD}


Sean Coffey CPEng
Geotechnical Engineer

\footnotetext{
https://galtgeo.sharepoint.com/sites/WAG230373/Shared Documents/01 CBH SI Great Northern Hwy Miling/03 Correspondence/WAG230373-01 002 R RevO.docx
}

\section*{Tables}

Table A1: ASS Field Testing Results
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Field Observations} \\
\hline \multirow[t]{2}{*}{Location} & \multirow[t]{2}{*}{Depth (m)} & \begin{tabular}{l}
\(\mathrm{pH}_{\mathrm{f}}\) \\
(pH units)
\end{tabular} & \[
\begin{gathered}
\mathrm{pH}_{\mathrm{fox}} \\
\text { (pH units) }
\end{gathered}
\] & \begin{tabular}{l}
\(\mathrm{pH}_{\mathrm{f}}-\mathrm{pH}_{\text {fox }}\) \\
(pH units)
\end{tabular} & \begin{tabular}{l}
Reaction Rate \\
(LMHXV)
\end{tabular} \\
\hline & & 4 & 4 & 1 & NV \\
\hline \multirow{7}{*}{TP01} & 0.00 & 6.0 & 5.9 & 0.1 & L \\
\hline & 0.25 & 8.6 & 8.3 & 0.3 & H \\
\hline & 0.50 & 9.4 & 8.6 & 0.8 & X \\
\hline & 0.75 & 9.3 & 8.9 & 0.4 & V \\
\hline & 1.00 & 9.1 & 9.1 & 0.0 & V \\
\hline & 1.25 & 8.8 & 6.8 & 2.0 & L \\
\hline & 1.50 & 8.8 & 6.4 & 2.4 & L \\
\hline \multirow{7}{*}{TP02} & 0.00 & 6.0 & 6.0 & 0.0 & L \\
\hline & 0.25 & 6.3 & 6.3 & 0.0 & X \\
\hline & 0.50 & 7.0 & 7.0 & 0.0 & X \\
\hline & 0.75 & 7.4 & 7.4 & 0.0 & V \\
\hline & 1.00 & 8.2 & 8.2 & 0.0 & H \\
\hline & 1.25 & 8.6 & 6.7 & 1.9 & H \\
\hline & 1.50 & 8.8 & 6.4 & 2.4 & L \\
\hline \multirow{7}{*}{TP03} & 0.00 & 8.1 & 5.6 & 2.5 & L \\
\hline & 0.25 & 9.1 & 7.9 & 1.2 & X \\
\hline & 0.50 & 9.0 & 8.7 & 0.3 & V \\
\hline & 0.75 & 8.7 & 8.6 & 0.1 & X \\
\hline & 1.00 & 8.5 & 8.5 & 0.0 & V \\
\hline & 1.25 & 9.0 & 8.8 & 0.2 & V \\
\hline & 1.50 & 8.0 & 6.2 & 1.8 & X \\
\hline \multirow{11}{*}{TP04} & 0.00 & 7.6 & 6.0 & 1.6 & L \\
\hline & 0.25 & 9.4 & 7.3 & 2.1 & X \\
\hline & 0.50 & 9.5 & 8.0 & 1.5 & X \\
\hline & 0.75 & 9.3 & 8.1 & 1.2 & V \\
\hline & 1.00 & 9.5 & 9.3 & 0.2 & X \\
\hline & 1.25 & 8.7 & 7.9 & 0.8 & M \\
\hline & 1.50 & 8.9 & 6.6 & 2.3 & L \\
\hline & 1.75 & 5.2 & 4.1 & 1.1 & L \\
\hline & 2.00 & 8.2 & 5.0 & 3.2 & X \\
\hline & 2.25 & 5.0 & 4.6 & 0.4 & L \\
\hline & 2.50 & 5.0 & 4.1 & 0.9 & L \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Field Observations} \\
\hline Location & Depth (m) & \[
\begin{gathered}
\mathrm{pH}_{\mathrm{f}} \\
\text { (pH units) }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{pH}_{\mathrm{fox}} \\
(\mathrm{pH} \text { units) }
\end{gathered}
\] & \begin{tabular}{l}
\(\mathrm{pH}-\mathrm{pH}_{\text {fox }}\) \\
(pH units)
\end{tabular} & \begin{tabular}{l}
Reaction Rate \\
(LMHXV)
\end{tabular} \\
\hline & & 4 & 4 & 1 & NV \\
\hline \multirow{8}{*}{TP05} & 0.00 & 6.6 & 5.3 & 1.3 & L \\
\hline & 0.25 & 7.7 & 6.3 & 1.4 & M \\
\hline & 0.50 & 8.9 & 8.2 & 0.7 & H \\
\hline & 0.75 & 9.0 & 7.6 & 1.4 & H \\
\hline & 1.00 & 9.1 & 7.8 & 1.3 & H \\
\hline & 1.25 & 9.4 & 9.3 & 0.1 & H \\
\hline & 1.50 & 9.1 & 7.4 & 1.7 & L \\
\hline & 1.75 & 9.3 & 6.9 & 2.4 & L \\
\hline \multirow{11}{*}{TP06} & 0.00 & 6.3 & 5.0 & 1.3 & L \\
\hline & 0.25 & 6.6 & 5.8 & 0.8 & L \\
\hline & 0.50 & 7.4 & 6.4 & 1.0 & L \\
\hline & 0.75 & 7.9 & 6.4 & 1.5 & L \\
\hline & 1.00 & 7.9 & 6.3 & 1.6 & L \\
\hline & 1.25 & 8.2 & 6.6 & 1.6 & L \\
\hline & 1.50 & 7.9 & 5.6 & 2.3 & L \\
\hline & 1.75 & 7.4 & 5.6 & 1.8 & L \\
\hline & 2.00 & 5.9 & 4.8 & 1.1 & L \\
\hline & 2.25 & 4.9 & 4.3 & 0.6 & L \\
\hline & 2.50 & 4.6 & 4.3 & 0.3 & L \\
\hline \multirow{7}{*}{TP07} & 0.00 & 5.2 & 5.1 & 0.1 & L \\
\hline & 0.25 & 7.9 & 6.5 & 1.4 & L \\
\hline & 0.50 & 8.9 & 6.6 & 2.3 & L \\
\hline & 0.75 & 8.2 & 8.2 & 0.0 & X \\
\hline & 1.00 & 8.6 & 8.2 & 0.4 & V \\
\hline & 1.25 & 8.4 & 8.0 & 0.4 & X \\
\hline & 1.50 & 8.4 & 6.3 & 2.1 & L \\
\hline
\end{tabular}

Figures


\section*{Appendix A: Site Photographs}


Photograph 1: Facing southwest from near existing former church


Photograph 2: Note on former church exterior wall


Photograph 3: Note on former church exterior wall


Photograph 4: Facing northwest from near the northeastern corner of site


Photograph 5: Facing south from near the northeastern corner of site


Photograph 6: Facing northeast from near location TP09


Photograph 7: Facing north from near the southwestern corner of existing former church.


Photograph 8: Facing west from near test pit location TP08.


Photograph 9: Facing west from near location TP04


Photograph 10: Facing east from near location TP01.


Photograph 11: Facing south from near location TP04.


Photograph 12: Facing south from near location P03


Photograph 13: Close up of cemented clayey soil interbedded with weathered rock within TP07 (depth 1.5 m )


Photograph 14: Close up of cemented clayey soil interbedded with weathered rock within TP07 (depth 1.5 m )

\section*{Appendix B: Test Pit Reports}

\section*{METHOD OF SOIL DESCRIPTION BOREHOLE AND TEST PIT REPORTS}

GRAPHIC LOG \& SOIL CLASSIFICATION SYMBOLS
\begin{tabular}{|l|l|l|}
\hline Graphic & USCS & Soil Name \\
\hline & & FILL (various types) \\
\hline & & COBBLES / BOULDERS \\
\hline & GP & GRAVEL (poorly graded) \\
\hline & GW & GRAVEL (well graded) \\
\hline & SW & Slayey GRAVEL \\
\hline & SC & SAND (welly GRAVEL \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Graphic & USCS & Soil Name \\
\hline & SM & Silty SAND \\
\hline & ML & SILT (low liquid limit) \\
\hline & SILT (high liquid limit) \\
\hline & CLAY (low plasticity) \\
\hline & CI & CLAY (medium plasticity) \\
\hline & Ot & Prganic SILT (low liquid limit) \\
\hline
\end{tabular}

NOTE: Dual classification given for soils with a fines content between \(5 \%\) and \(12 \%\).
SOIL CLASSIFICATION AND INFERRED STRATIGRAPHY
Soil descriptions are based on AS1726-2017. Material properties are assessed in the field by visual/tactile methods in combination with field and laboratory testing techniques (where used).
NOTE: AS 1726-2017 defines a fine grained soil where the total dry mass of fine fractions ( \(<0.075 \mathrm{~mm}\) particle size) exceeds \(35 \%\).
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ PARTICLE SIZE } \\
\hline \multicolumn{2}{|c|}{ Soil Name } & Particle Size (mm) \\
\hline \multicolumn{2}{|c|}{ BOULDERS } & \(>200\) \\
\hline \multicolumn{2}{|c|}{ COBBLES } & 63 to 200 \\
\hline \multirow{3}{*}{ GRAVEL } & Coarse & 19 to 63 \\
\cline { 2 - 3 } & Medium & 6.7 to 19 \\
\cline { 2 - 3 } & Fine & 2.3 to 6.7 \\
\hline \multirow{3}{*}{ SAND } & Coarse & 0.6 to 2.36 \\
\cline { 2 - 3 } & Medium & 0.21 to 0.6 \\
\cline { 2 - 3 } & Fine & 0.075 to 0.21 \\
\hline \multirow{2}{*}{ FINES } & SILT & 0.002 to 0.075 \\
\cline { 2 - 3 } & CLAY & \(<0.002\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{RESISTANCE TO EXCAVATION} \\
\hline Symbol & Term & Description \\
\hline VE & Very easy & \multirow{5}{*}{All resistances are relative to the selected method of excavation} \\
\hline E & Easy & \\
\hline F & Firm & \\
\hline H & Hard & \\
\hline VH & Very hard & \\
\hline & & \\
\hline \multicolumn{3}{|r|}{CONSISTENCY} \\
\hline Symbol & Term & Undrained Shear Strength (kPa) \\
\hline VS & Very Soft & 0 to 12 \\
\hline S & Soft & 12 to 25 \\
\hline F & Firm & 25 to 50 \\
\hline St & Stiff & 50 to 100 \\
\hline VSt & Very Stiff & 100 to 200 \\
\hline H & Hard & >200 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ MOISTURE CONDITION } \\
\hline Symbol & Term \\
\hline D & Dry \\
\hline M & Moist \\
\hline W & Wet \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ CEMENTATION } \\
\hline Cementation & Description \\
\hline Weakly cemented & \begin{tabular}{c} 
Soil may be easily \\
disaggregated by hand \\
in air or water
\end{tabular} \\
\hline Moderately cemented & \begin{tabular}{c} 
Effort is required to \\
disaggregate the soil \\
by hand in air or water
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ ORGANIC SOILS } \\
\hline Material & \begin{tabular}{c} 
Organic Content \\
\(\%\) of dry mass
\end{tabular} \\
\hline \begin{tabular}{c} 
Inorganic \\
soil
\end{tabular} & \(<2 \%\) \\
\hline Organic soil & \(2 \%\) to \(25 \%\) \\
\hline Peat & \(>25 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ DENSITY } \\
\hline Symbol & Term & \begin{tabular}{c} 
Density \\
Index (\%)
\end{tabular} \\
\hline VL & Very Loose & \(<15\) \\
\hline L & Loose & 15 to 35 \\
\hline MD & Medium Dense & 35 to 65 \\
\hline D & Dense & 65 to 85 \\
\hline VD & Very Dense & \(>85\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{EXPLANATORY NOTES TO BE READ WITH BOREHOLE AND TEST PIT REPORTS} & \multicolumn{2}{|r|}{} \\
\hline \multicolumn{6}{|l|}{METHOD OF DRILLING OR EXCAVATION} \\
\hline AC & Air Core & E & Excavator & PQ3 & PQ3 Core Barrel \\
\hline AD/T & Auger Drilling with TC-Bit & EH & Excavator with Hammer & PT & Push Tube \\
\hline AD/V & Auger Drilling with V-Bit & HA & Hand Auger & R & Ripper \\
\hline AT & Air Track & HMLC & HMLC Core Barrel & RR & Rock Roller \\
\hline B & Bulldozer Blade & HQ3 & HQ3 Core Barrel & SON & Sonic Rig \\
\hline BH & Backhoe Bucket & N & Natural Exposure & SPT & Driven SPT \\
\hline CT & Cable Tool & NMLC & NMLC Core Barrel & WB & Washbore \\
\hline DT & Diatube & PP & Push Probe & x & Existing Excavation \\
\hline \multicolumn{6}{|l|}{SUPPORT} \\
\hline T & Timbering & & & & \\
\hline \multicolumn{6}{|l|}{PENETRATION EFFORT (RELATIVE TO THE EQUIPMENT USED)} \\
\hline VE & Very Easy & E & Easy & F & Firm \\
\hline H & Hard & VH & Very Hard & & \\
\hline \multicolumn{6}{|l|}{WATER} \\
\hline - & Water Inflow & & - Water Level & & \\
\hline 4 & Water Loss (complete) & & & & \\
\hline \(\checkmark\) & Water Loss (partial) & & & & \\
\hline \multicolumn{6}{|l|}{SAMPLING AND TESTING} \\
\hline B & Bulk Disturbed Sample & & P & Piston Sam & \\
\hline BLK & Block Sample & & PBT & Plate Bea & Test \\
\hline C & Core Sample & & U & Undisturb & Push-in Sample \\
\hline CBR & CBR Mould Sample & & & U50: 50 m & diameter \\
\hline D & Small Disturbed Sample & & SPT & Standard & netration Test \\
\hline ES & Environmental Soil Sample & & & Example: & , \(5 \mathrm{~N}=9\) \\
\hline EW & Environmental Water Sample & & & 3,4,5: Blo & per 150 mm \\
\hline G & Gas Sample & & & \(\mathrm{N}=9\) : Blow & er 300 mm after \\
\hline HP & Hand Penetrometer & & & & seating interval \\
\hline LB & Large Bulk Disturbed Sample & & vs & Vane She & P Peak \\
\hline M & Mazier Type Sample & & & \(\mathrm{R}=\) Remo & d (kPa) \\
\hline MC & Moisture Content Sample & & w & Water Sa & \\
\hline \multicolumn{6}{|l|}{ROCK CORE RECOVERY CRL} \\
\hline \multicolumn{6}{|l|}{TCR = Total Core Recovery (\%) \(=\frac{C R L}{T C L} \times 100\)} \\
\hline \multicolumn{6}{|l|}{\[
\text { RQD }=\text { Rock Quality Designation (\%) }=\frac{A L C>100}{T C L} \times 100
\]} \\
\hline TCL & Length of Core Run & & & & \\
\hline CRL & Length of Core Recovered & & & & \\
\hline ALC>100 & Total Length of Axial Lengths of & ore Grea & ater than 100 mm Long & & \\
\hline
\end{tabular}










\section*{Appendix C: Constant Head Permeameter Test Results}




\section*{Appendix D: Geotechnical Laboratory Test Results}
\begin{tabular}{|c|c|c|c|}
\hline & IL | AGGREGATE | & CRUS & NG \\
\hline \multicolumn{4}{|c|}{TEST REPORT - AS 1289.3.6.1} \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12011_1_PSD \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12011 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP03 0.4-0.7m & Date Tested: & 07/08-08/08/2023 \\
\hline
\end{tabular}

TEST RESULTS - Particle Size Distribution of Soil

\section*{Sampling Method:}

Sampled by Client, Tested as Received


\section*{Comments:}

Approved Signatory:


Name: Cody O'Neill
Date: 08/August/2023

NATA
Accredited for compliance with ISO/IEC 17025 - Testing
CCREDITATION
This document shall not be reproduced except in full
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & OIL | AGGREGATE | & \multicolumn{2}{|l|}{CRUSHING} \\
\hline & \multicolumn{3}{|l|}{TEST REPORT - AS 1289.3.1.1, 3.2.1, 3.3.1 \& 3.4.1} \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12011_1_PI \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12011 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP03 0.4-0.7m & Date Tested: & 8/08/2023 \\
\hline
\end{tabular}

\section*{TEST RESULTS - Consistency Limits (Casagrande)}

Sampling Method:
History of Sample:
Method of Preparation:

Sampled by Client, Tested as Received Oven Dried \(<50^{\circ} \mathrm{C}\) Dry Sieved

AS 1289.3.1.1
AS 1289.3.2.1
AS 1289.3.3.1
AS 1289.3.4.1

AS 1289.3.4.1
AS 1289.3.4.1

Liquid Limit (\%)
50
Plastic Limit (\%) 18
Plasticity Index (\%) 32

Linear Shrinkage (\%) 13.5

250
Condition of Dry Specimen:

\author{
Cracked, Curled
}

\section*{Comments:}

Approved Signatory:


Name: Cody O'Neill
Date: 09/August/2023
Accreditation No. 20599
Accredited for compliance
\(\underset{\substack{\text { wonu necomasio } \\ \text { AcCREDTITIIIN }}}{ }\) with ISO/IEC 17025-Testing
This document shall not be reproduced except in full

W E S T E R N
GEOTECHNICAL

\section*{\& Laboratory Services}
\begin{tabular}{lll|ll} 
& SOIL & AGGREGATE & CONCRETE & CRUSHING \\
& & TEST REPORT - AS 1289.5.2.1 & & \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12011_1_MMDD \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12011 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP03 0.4-0.7m & Date Tested: & 7/08/2023 \\
\hline
\end{tabular}

\section*{TEST RESULTS - Modified Maximum Dry Density}

\section*{Sampling Method:}

\section*{Sample Curing Time (Hours):}

Method used to Determine Liquid Limit:
Material + 19.0mm (\%):

Sampled by Client, Tested as Received
48
Visual / Tactile Assessment by Competent Technician Material + 37.5mm (\%)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Moisture Content (\%) & 9.8 & 12.2 & 14.3 & 16.9 & \\
\hline Dry Density \(\left(\mathrm{t} / \mathrm{m}^{3}\right.\) ) & 1.796 & 1.827 & 1.894 & 1.824 & \\
\hline
\end{tabular}

Dry Density ( \(\mathrm{t} / \mathrm{m}^{3}\) )


Modified Maximum Dry Density ( \(\mathrm{t} / \mathrm{m}^{3}\) )
1.89

Optimum Moisture Content (\%)
14.5

Comments: \(\quad\) The above air void lines are derived from a calculated apparent particle density of \(\mathbf{2 . 7 8 9} \mathbf{t} / \mathrm{m}^{\mathbf{3}}\)


Name: Cody O'Neill
Date: 08/August/2023

\section*{NATA}

Accreditation No. 20599
Accredited for compliance

This document shall not be reproduced except in full


\section*{TEST RESULTS - CALIFORNIA BEARING RATIO}

Sample Description:
Sampling Method:


Sandy Clay with Gravel
Sampled by Client, Tested as Received
\begin{tabular}{|cccc|}
\hline \multicolumn{4}{|c|}{ Compaction Details } \\
\hline Compaction Method & AS 1289.5.2.1 & Hammer Type & Modified \\
Plasticity Determined by & Estimated & Curing Time (Hours) & 72.0 \\
\% Retained 19.0 mm & 0 & Excluded/Replaced & Excluded \\
Maximum Dry Density \(\left(\mathrm{t} / \mathrm{m}^{3}\right)\) & 1.90 & Optimum Moisture (\%) & 14.5 \\
Target Dry Density Ratio (\%) & 92 & Target Moisture Ratio (\%) & 100 \\
\hline
\end{tabular}
\begin{tabular}{|cccc|}
\hline \multicolumn{5}{|c|}{ Specimen Conditions At Compaction } \\
\hline Dry Density (t/m3) & 1.75 & Moisture Content (\%) & 14.1 \\
Density Ratio (\%) & 92.5 & Moisture Ratio (\%) & 97.0 \\
\hline
\end{tabular}
\begin{tabular}{|cccc|}
\hline \multicolumn{4}{|c|}{ Specimen Conditions After Soak } \\
\hline Soaked or Unsoaked & Soaked & Soaking Period (days) & 4 \\
Surcharges Applied (kg) & 6.75 & Measured Swell (\%) & 2.5 \\
Dry Density (t/m \({ }^{3}\) ) & 1.71 & Dry Density Ratio (\%) & 90.0 \\
Moisture Content (\%) & 22.5 & Moisture Ratio (\%) & 155.0 \\
\hline
\end{tabular}
\begin{tabular}{||cccc|}
\hline \multicolumn{5}{|c|}{ Specimen Conditions After Test } \\
\hline Top 30mm Moisture (\%) & 23.6 & Remaining Depth (\%) & 21.1 \\
\hline
\end{tabular}

\author{
Correction applied to Penetration: Om \\ Determined at a Penetration of: \(\mathbf{2 . 5 m m}\) \\ California Bearing Ratio (CBR): 4.5\%
}

Comments:

Approved Signatory:


Name: Cody O'Neill
Date: 15/August/2023

NATE
Accreditation No. 20599
Accredited for compliance with ISO/IEC 17025 -Testing
\begin{tabular}{ll|l|l} 
& SOlL & AGGREGATE & CONCRETE \\
& TEST REPORT - AS 1289.3.6.1 & CRUSHING \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12012_1_PSD \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12012 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP05 1.0-1.3m & Date Tested: & 07/08-08/08/2023
\end{tabular}

TEST RESULTS - Particle Size Distribution of Soil

\section*{Sampling Method:}

Sampled by Client, Tested as Received
\begin{tabular}{lc} 
Sieve Size (mm) & \begin{tabular}{c} 
Percent Passing \\
Sieve (\%)
\end{tabular}
\end{tabular}
150.0
100.0
75.0
37.5
19.0

100
9.5

100
4.75

97
2.36 90
1.18

86
0.600

76
0.425

70
0.300

62
0.150

46
0.075

40


\section*{Comments:}

Approved Signatory:


Name: Cody O'Neill
Date: 08/August/2023

\section*{NATA}

Accredited for compliance with ISO/IEC 17025 - Testing
accrenitation
This document shall not be reproduced except in full
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & OIL | AGGREGATE | & \multicolumn{2}{|l|}{CRUSHING} \\
\hline & \multicolumn{3}{|l|}{TEST REPORT - AS 1289.3.1.1, 3.2.1, 3.3.1 \& 3.4.1} \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12012_1_PI \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12012 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP05 1.0-1.3m & Date Tested: & 8/08/2023 \\
\hline
\end{tabular}

\section*{TEST RESULTS - Consistency Limits (Casagrande)}

Sampling Method:
History of Sample:
Method of Preparation:

Sampled by Client, Tested as Received Oven Dried \(<50^{\circ} \mathrm{C}\) Dry Sieved

AS 1289.3.1.1
Liquid Limit (\%) 44

AS 1289.3.2.1
AS 1289.3.3.1
AS 1289.3.4.1
Plastic Limit (\%) 16

Plasticity Index (\%) 28

Linear Shrinkage (\%) 11.0

AS 1289.3.4.1
AS 1289.3.4.1 Length of Mould (mm) 250

Condition of Dry Specimen:

\author{
Cracked, Curled
}

\section*{Comments:}

Approved Signatory:


Name: Cody O'Neill
Date: 09/August/2023
\begin{tabular}{|c|c|c|c|}
\hline & IL | AGGREGATE | & CRUS & NG \\
\hline \multicolumn{4}{|c|}{TEST REPORT - AS 1289.3.6.1} \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12013_1_PSD \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12013 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP06 2.2-2.5m & Date Tested: & 07/08-08/08/2023 \\
\hline
\end{tabular}

TEST RESULTS - Particle Size Distribution of Soil

\section*{Sampling Method:}

Sampled by Client, Tested as Received


\section*{Comments:}

Approved Signatory:


Name: Cody O'Neill
Date: 08/August/2023

NATA
Accredited for compliance with ISO/IEC 17025 - Testing
wopu uecognsen
accheritation
This document shall not be reproduced except in full

\begin{tabular}{ll|l|l} 
& SOlL & AGGREGATE & CONCRETE \\
& TEST REPORT - AS 1289.3.6.1 & CRUSHING \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12014_1_PSD \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12014 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP08 \(0.45-0.65 m\) & Date Tested: & 07/08-08/08/2023
\end{tabular}

TEST RESULTS - Particle Size Distribution of Soil

\section*{Sampling Method:}

Sampled by Client, Tested as Received


\section*{Comments:}

Approved Signatory:


Name: Cody O'Neill
Date: 08/August/2023

NATA
Accredited for compliance with ISO/IEC 17025 - Testing
CCREDITATION
This document shall not be reproduced except in full


\section*{TEST RESULTS - Consistency Limits (Casagrande)}

Sampling Method:
History of Sample:
Method of Preparation:

Sampled by Client, Tested as Received Oven Dried \(<50^{\circ} \mathrm{C}\) Dry Sieved

AS 1289.3.1.1 Liquid Limit (\%) 54
AS 1289.3.2.1
Plastic Limit (\%) 18

AS 1289.3.3.1
Plasticity Index (\%) 36

AS 1289.3.4.1
Linear Shrinkage (\%) 15.0

AS 1289.3.4.1
AS 1289.3.4.1 Length of Mould (mm)

125
Condition of Dry Specimen:
Curled

\section*{Comments:}

Approved Signatory:


Name: Cody O'Neill
Date: 09/August/2023
Accreditation No. 20599
Accredited for compliance
\(\underset{\substack{\text { waput hecoumse } \\ \text { cechebitation }}}{ }\) with ISO/IEC 17025 - Testing
This document shall not be reproduced except in full
\begin{tabular}{ll|l|l} 
& SOlL & AGGREGATE & CONCRETE \\
& TEST REPORT - AS 1289.3.6.1 & CRUSHING \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12015_1_PSD \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12015 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP09 0.5-0.7m & Date Tested: & 07/08-08/08/2023
\end{tabular}

TEST RESULTS - Particle Size Distribution of Soil

\section*{Sampling Method:}

Sampled by Client, Tested as Received
\begin{tabular}{lc} 
Sieve Size (mm) & \begin{tabular}{c} 
Percent Passing \\
Sieve (\%)
\end{tabular}
\end{tabular}
150.0
100.0
75.0
37.5
19.0

100
9.5

100
4.75

100
2.36

98
1.18

95
0.600

86
0.425

80
0.300

73
0.150

54
0.075

48


\section*{Comments:}

Approved Signatory:


Name: Cody O'Neill
Date: 08/August/2023

\section*{NATA}

Accredited for compliance with ISO/IEC 17025 - Testing
woplu fecomsin
Accheoltation
This document shall not be reproduced except in full


TEST RESULTS - Consistency Limits (Casagrande)

Sampling Method:
History of Sample:
Method of Preparation:

Sampled by Client, Tested as Received Oven Dried \(<50^{\circ} \mathrm{C}\) Dry Sieved

AS 1289.3.1.1
AS 1289.3.2.1
AS 1289.3.3.1
AS 1289.3.4.1

AS 1289.3.4.1
AS 1289.3.4.1

Liquid Limit (\%) 45

Plastic Limit (\%) 17
Plasticity Index (\%) 28

Linear Shrinkage (\%) 10.5

250
Condition of Dry Specimen:

Comments: Report replaces WG23.12015_1_PI. Report reissued due to updated Sampling Method.

Approved Signatory:


Name: Cody O'Neill
Date: 16-August-2023
Accreditation No. 20599
Accredited for compliance
\(\underset{\substack{\text { wept hecoumse } \\ \text { cechebitation }}}{ }\) with ISO/IEC 17025 - Testing
This document shall not be reproduced except in full

\section*{Appendix E: Environmental Laboratory Test Results}

\section*{Galt Environment P/L}

50 Edward Street
Osborne Park
WA 6017


NATA Accredited Accreditation Number 2377

Accredited for compliance with ISO/IEC 17025 - Testing
NATA is a signatory to the ILAC Mutual Recognition
Arrangement for the mutual recognition of the
Arrangemen of testing, medical testing, calibration,
equivalence
inspection, proficiency testing scheme providers and inspection, proficiency testing scheme providers and
reference materials producers reports and certificates.

\section*{Attention:}

\section*{- ALL SRA/Results}

\section*{Report}

Project name
Project ID
Received Date

1014072-S
MILLING
WAG230373
Aug 04, 2023
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Client Sample ID Sample Matrix \\
Eurofins Sample No. \\
Date Sampled \\
Test/Reference
\end{tabular} & LOR & Unit & \begin{tabular}{l}
TP01 0.75 \\
Soil \\
L23- \\
Au0012779 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP02 0.25 \\
Soil \\
L23- \\
Au0012780 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP02 1.25 \\
Soil \\
L23- \\
Au0012781 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP03 0.5 \\
Soil \\
L23- \\
Au0012782 \\
Jul 31, 2023
\end{tabular} \\
\hline \multicolumn{7}{|l|}{Extraneous Material} \\
\hline <2mm Fraction & 0.005 & g & 78 & 56 & 96 & 90 \\
\hline >2mm Fraction & 0.005 & \(g\) & < 0.005 & \(<0.005\) & 60 & 21 \\
\hline Analysed Material & 0.1 & \% & 100 & 100 & 62 & 81 \\
\hline Extraneous Material & 0.1 & \% & \(<0.1\) & \(<0.1\) & 38 & 19 \\
\hline \multicolumn{7}{|l|}{Net Acidity (Excluding ANC)} \\
\hline CRS Suite - Net Acidity - NASSG (Excluding ANC) & 0.02 & \% S & < 0.02 & <0.02 & < 0.02 & < 0.02 \\
\hline CRS Suite - Net Acidity - NASSG (Excluding ANC) & 10 & mol H+/t & < 10 & < 10 & < 10 & < 10 \\
\hline CRS Suite - Liming Rate - NASSG (Excluding ANC) & 1 & kg CaCO3/t & <1 & <1 & <1 & <1 \\
\hline \multicolumn{7}{|l|}{Actual Acidity (NLM-3.2)} \\
\hline pH-KCL (NLM-3.1) & 0.1 & pH Units & 9.1 & 7.0 & 8.9 & 9.0 \\
\hline Titratable Actual Acidity (NLM-3.2) & 2 & mol \(\mathrm{H}+\) /t & <2 & <2 & <2 & <2 \\
\hline Titratable Actual Acidity (NLM-3.2) & 0.003 & \% pyrite S & < 0.003 & \(<0.003\) & < 0.003 & \(<0.003\) \\
\hline \multicolumn{7}{|l|}{Potential Acidity - Chromium Reducible Sulfur} \\
\hline Chromium Reducible Sulfur (s-SCr) (NLM-2.1) \({ }^{\text {S04 }}\) & 0.005 & \% S & < 0.005 & \(<0.005\) & \(<0.005\) & \(<0.005\) \\
\hline Chromium Reducible Sulfur (a-SCr) (NLM-2.1) & 3 & mol H+/t & \(<3\) & \(<3\) & \(<3\) & \(<3\) \\
\hline \multicolumn{7}{|l|}{Extractable Sulfur} \\
\hline Sulfur - KCI Extractable & 0.005 & \% S & N/A & N/A & N/A & N/A \\
\hline HCl Extractable Sulfur & 0.005 & \% S & N/A & N/A & N/A & N/A \\
\hline \multicolumn{7}{|l|}{Retained Acidity (S-NAS)} \\
\hline Net Acid soluble sulfur (SNAS) NLM-4.1 & 0.005 & \% S & N/A & N/A & N/A & N/A \\
\hline Net Acid soluble sulfur (s-SNAS) NLM-4.1 \({ }^{\text {s02 }}\) & 0.005 & \% S & N/A & N/A & N/A & N/A \\
\hline Net Acid soluble sulfur (a-SNAS) NLM-4.1 & 2 & mol \(\mathrm{H}+\) /t & N/A & N/A & N/A & N/A \\
\hline HCl Extractable Sulfur Correction Factor & 1 & factor & 2.0 & 2.0 & 2.0 & 2.0 \\
\hline \multicolumn{7}{|l|}{Acid Neutralising Capacity (ANCbt)} \\
\hline Acid Neutralising Capacity - (ANCbt) (NLM-5.2) & 0.01 & \% CaCO3 & 6.9 & 1.00 & 1.3 & 2.9 \\
\hline Acid Neutralising Capacity - (s-ANCbt) (NLM-5.2) \({ }^{\text {s }}\) ( & 0.02 & \% S & 2.2 & 0.32 & 0.43 & 0.93 \\
\hline Acid Neutralising Capacity - (a-ANCbt) (NLM-5.2) & 2 & mol H+/t & 1400 & 200 & 270 & 580 \\
\hline ANC Fineness Factor & & factor & 1.5 & 1.5 & 1.5 & 1.5 \\
\hline \multicolumn{7}{|l|}{Net Acidity (Including ANC)} \\
\hline CRS Suite - Net Acidity - NASSG (Including ANC) & 0.02 & \% S & < 0.02 & <0.02 & < 0.02 & < 0.02 \\
\hline CRS Suite - Net Acidity - NASSG (Including ANC) & 10 & mol H+/t & < 10 & < 10 & < 10 & < 10 \\
\hline CRS Suite - Liming Rate - NASSG (Including ANC) \({ }^{\text {S01 }}\) & 1 & kg CaCO3/t & \(<1\) & <1 & <1 & <1 \\
\hline \multicolumn{7}{|l|}{Sample Properties} \\
\hline \% Moisture & 1 & \% & 11 & 9.0 & 8.4 & 12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Client Sample ID \\
Sample Matrix \\
Eurofins Sample No. \\
Date Sampled \\
Test/Reference
\end{tabular} & LOR & Unit & \begin{tabular}{l}
TP04 0.75 \\
Soil \\
L23- \\
Au0012783 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP04 1.75 \\
Soil \\
L23- \\
Au0012784 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP05 0.75 \\
Soil \\
L23- \\
Au0012785 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP06 2.25 \\
Soil \\
L23- \\
Au0012786 \\
Jul 31, 2023
\end{tabular} \\
\hline \multicolumn{7}{|l|}{Extraneous Material} \\
\hline <2mm Fraction & 0.005 & \(g\) & 88 & 92 & 110 & 100 \\
\hline >2mm Fraction & 0.005 & g & < 0.005 & \(<0.005\) & < 0.005 & < 0.005 \\
\hline Analysed Material & 0.1 & \% & 100 & 100 & 100 & 100 \\
\hline Extraneous Material & 0.1 & \% & <0.1 & <0.1 & <0.1 & <0.1 \\
\hline \multicolumn{7}{|l|}{Net Acidity (Excluding ANC)} \\
\hline CRS Suite - Net Acidity - NASSG (Excluding ANC) & 0.02 & \% S & < 0.02 & < 0.02 & < 0.02 & 0.04 \\
\hline CRS Suite - Net Acidity - NASSG (Excluding ANC) & 10 & mol H+/t & \(<10\) & < 10 & \(<10\) & 26 \\
\hline CRS Suite - Liming Rate - NASSG (Excluding ANC) & 1 & kg CaCO3/t & <1 & <1 & <1 & 1.9 \\
\hline \multicolumn{7}{|l|}{Actual Acidity (NLM-3.2)} \\
\hline pH-KCL (NLM-3.1) & 0.1 & pH Units & 9.1 & 7.9 & 8.9 & 4.6 \\
\hline Titratable Actual Acidity (NLM-3.2) & 2 & mol H+/t & <2 & <2 & <2 & 26 \\
\hline Titratable Actual Acidity (NLM-3.2) & 0.003 & \% pyrite S & < 0.003 & \(<0.003\) & \(<0.003\) & 0.041 \\
\hline \multicolumn{7}{|l|}{Potential Acidity - Chromium Reducible Sulfur} \\
\hline Chromium Reducible Sulfur (s-SCr) (NLM-2.1) \({ }^{\text {s04 }}\) & 0.005 & \% S & < 0.005 & < 0.005 & <0.005 & <0.005 \\
\hline Chromium Reducible Sulfur (a-SCr) (NLM-2.1) & 3 & mol H+/t & <3 & <3 & <3 & \(<3\) \\
\hline \multicolumn{7}{|l|}{Extractable Sulfur} \\
\hline Sulfur - KCI Extractable & 0.005 & \% S & N/A & N/A & N/A & N/A \\
\hline HCI Extractable Sulfur & 0.005 & \% S & N/A & N/A & N/A & N/A \\
\hline \multicolumn{7}{|l|}{Retained Acidity (S-NAS)} \\
\hline Net Acid soluble sulfur (SNAS) NLM-4.1 & 0.005 & \% S & N/A & N/A & N/A & N/A \\
\hline Net Acid soluble sulfur (s-SNAS) NLM-4.1 \({ }^{\text {S02 }}\) & 0.005 & \% S & N/A & N/A & N/A & N/A \\
\hline Net Acid soluble sulfur (a-SNAS) NLM-4.1 & 2 & mol H+/t & N/A & N/A & N/A & N/A \\
\hline HCI Extractable Sulfur Correction Factor & 1 & factor & 2.0 & 2.0 & 2.0 & 2.0 \\
\hline \multicolumn{7}{|l|}{Acid Neutralising Capacity (ANCbt)} \\
\hline Acid Neutralising Capacity - (ANCbt) (NLM-5.2) & 0.01 & \% CaCO3 & 8.0 & 0.71 & 1.8 & N/A \\
\hline Acid Neutralising Capacity - (s-ANCbt) (NLM-5.2) \({ }^{\text {s03 }}\) & 0.02 & \% S & 2.5 & 0.23 & 0.57 & N/A \\
\hline Acid Neutralising Capacity - (a-ANCbt) (NLM-5.2) & 2 & mol H+/t & 1600 & 140 & 360 & N/A \\
\hline ANC Fineness Factor & & factor & 1.5 & 1.5 & 1.5 & 1.5 \\
\hline \multicolumn{7}{|l|}{Net Acidity (Including ANC)} \\
\hline CRS Suite - Net Acidity - NASSG (Including ANC) & 0.02 & \% S & < 0.02 & < 0.02 & < 0.02 & 0.04 \\
\hline CRS Suite - Net Acidity - NASSG (Including ANC) & 10 & mol H+/t & < 10 & < 10 & <10 & 26 \\
\hline CRS Suite - Liming Rate - NASSG (Including ANC) \({ }^{\text {S01 }}\) & 1 & kg CaCO3/t & <1 & <1 & <1 & 1.9 \\
\hline \multicolumn{7}{|l|}{Sample Properties} \\
\hline \% Moisture & 1 & \% & 8.7 & 8.8 & 9.6 & 8.9 \\
\hline \begin{tabular}{l}
Client Sample ID \\
Sample Matrix \\
Eurofins Sample No. \\
Date Sampled \\
Test/Reference
\end{tabular} & LOR & Unit & \begin{tabular}{l}
TP07 1.0 \\
Soil \\
L23- \\
Au0012787 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
QC01 \\
Soil \\
L23- \\
Au0012788 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP01 0.0 \\
Soil \\
L23- \\
Au0012789 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP02 0.0 \\
Soil \\
L23- \\
Au0012790 \\
Jul 31, 2023
\end{tabular} \\
\hline \multicolumn{7}{|l|}{Extraneous Material} \\
\hline <2mm Fraction & 0.005 & \(g\) & 120 & 64 & - & - \\
\hline >2mm Fraction & 0.005 & g & < 0.005 & < 0.005 & - & - \\
\hline Analysed Material & 0.1 & \% & 100 & 100 & - & - \\
\hline Extraneous Material & 0.1 & \% & <0.1 & <0.1 & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Client Sample ID \\
Sample Matrix \\
Eurofins Sample No. \\
Date Sampled \\
Test/Reference
\end{tabular} & LOR & Unit & \begin{tabular}{l}
TP07 1.0 \\
Soil \\
L23- \\
Au0012787 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
QC01 \\
Soil \\
L23- \\
Au0012788 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP01 0.0 \\
Soil \\
L23- \\
Au0012789 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP02 0.0 \\
Soil \\
L23- \\
Au0012790 \\
Jul 31, 2023
\end{tabular} \\
\hline \multicolumn{7}{|l|}{Net Acidity (Excluding ANC)} \\
\hline CRS Suite - Net Acidity - NASSG (Excluding ANC) & 0.02 & \% S & < 0.02 & < 0.02 & - & - \\
\hline CRS Suite - Net Acidity - NASSG (Excluding ANC) & 10 & mol H+/t & < 10 & < 10 & - & - \\
\hline CRS Suite - Liming Rate - NASSG (Excluding ANC) & 1 & kg CaCO3/t & <1 & <1 & - & - \\
\hline \multicolumn{7}{|l|}{Actual Acidity (NLM-3.2)} \\
\hline pH-KCL (NLM-3.1) & 0.1 & pH Units & 8.5 & 9.0 & - & - \\
\hline Titratable Actual Acidity (NLM-3.2) & 2 & mol H+/t & <2 & \(<2\) & - & - \\
\hline Titratable Actual Acidity (NLM-3.2) & 0.003 & \% pyrite S & < 0.003 & \(<0.003\) & - & - \\
\hline \multicolumn{7}{|l|}{Potential Acidity - Chromium Reducible Sulfur} \\
\hline Chromium Reducible Sulfur (s-SCr) (NLM-2.1) \({ }^{\text {s04 }}\) & 0.005 & \% S & < 0.005 & \(<0.005\) & - & - \\
\hline Chromium Reducible Sulfur (a-SCr) (NLM-2.1) & 3 & mol H+/t & <3 & <3 & - & - \\
\hline \multicolumn{7}{|l|}{Extractable Sulfur} \\
\hline Sulfur - KCI Extractable & 0.005 & \% S & N/A & N/A & - & - \\
\hline HCI Extractable Sulfur & 0.005 & \% S & N/A & N/A & - & - \\
\hline \multicolumn{7}{|l|}{Retained Acidity (S-NAS)} \\
\hline Net Acid soluble sulfur (SNAS) NLM-4.1 & 0.005 & \% S & N/A & N/A & - & - \\
\hline Net Acid soluble sulfur (s-SNAS) NLM-4.1 \({ }^{\text {S02 }}\) & 0.005 & \% S & N/A & N/A & - & - \\
\hline Net Acid soluble sulfur (a-SNAS) NLM-4.1 & 2 & mol H+/t & N/A & N/A & - & - \\
\hline HCI Extractable Sulfur Correction Factor & 1 & factor & 2.0 & 2.0 & - & - \\
\hline \multicolumn{7}{|l|}{Acid Neutralising Capacity (ANCbt)} \\
\hline Acid Neutralising Capacity - (ANCbt) (NLM-5.2) & 0.01 & \% CaCO3 & 0.81 & 4.7 & - & - \\
\hline Acid Neutralising Capacity - (s-ANCbt) (NLM-5.2) \({ }^{\text {s03 }}\) & 0.02 & \% S & 0.26 & 1.5 & - & - \\
\hline Acid Neutralising Capacity - (a-ANCbt) (NLM-5.2) & 2 & mol H+/t & 160 & 940 & - & - \\
\hline ANC Fineness Factor & & factor & 1.5 & 1.5 & - & - \\
\hline \multicolumn{7}{|l|}{Net Acidity (Including ANC)} \\
\hline CRS Suite - Net Acidity - NASSG (Including ANC) & 0.02 & \% S & < 0.02 & < 0.02 & - & - \\
\hline CRS Suite - Net Acidity - NASSG (Including ANC) & 10 & mol \(\mathrm{H}+\mathrm{t}\) & < 10 & <10 & - & - \\
\hline CRS Suite - Liming Rate - NASSG (Including ANC) \({ }^{\text {S01 }}\) & 1 & \(\mathrm{kg} \mathrm{CaCO} / \mathrm{t}^{\text {d }}\) & <1 & <1 & - & - \\
\hline \multicolumn{7}{|l|}{Sample Properties} \\
\hline \% Moisture & 1 & \% & 11 & 11 & 6.5 & 8.1 \\
\hline \multicolumn{7}{|l|}{Total Recoverable Hydrocarbons - 1999 NEPM Fractions} \\
\hline TRH C6-C9 & 20 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & \(<20\) & \(<20\) \\
\hline TRH C10-C14 & 20 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & <20 & <20 \\
\hline TRH C15-C28 & 50 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & < 50 & < 50 \\
\hline TRH C29-C36 & 50 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & < 50 & < 50 \\
\hline TRH C10-C36 (Total) & 50 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & < 50 & <50 \\
\hline \multicolumn{7}{|l|}{BTEX} \\
\hline Benzene & 0.1 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & \(<0.1\) & \(<0.1\) \\
\hline Toluene & 0.1 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & \(<0.1\) & \(<0.1\) \\
\hline Ethylbenzene & 0.1 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & < 0.1 & \(<0.1\) \\
\hline m\&p-Xylenes & 0.2 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & < 0.2 & \(<0.2\) \\
\hline o-Xylene & 0.1 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & <0.1 & \(<0.1\) \\
\hline Xylenes - Total* & 0.3 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & <0.3 & <0.3 \\
\hline \multicolumn{7}{|l|}{BTEX} \\
\hline 4-Bromofluorobenzene (surr.) & 1 & \% & - & - & 113 & 93 \\
\hline \multicolumn{7}{|l|}{Total Recoverable Hydrocarbons - 2013 NEPM Fractions} \\
\hline Naphthalene \({ }^{\text {N02 }}\) & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & \(<0.5\) & \(<0.5\) \\
\hline TRH >C10-C16 less Naphthalene (F2) \({ }^{\text {N01 }}\) & 50 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & < 50 & < 50 \\
\hline TRH C6-C10 & 20 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & \(<20\) & \(<20\) \\
\hline TRH C6-C10 less BTEX (F1) \({ }^{\text {N04 }}\) & 20 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & \(<20\) & <20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Client Sample ID Sample Matrix \\
Eurofins Sample No. Date Sampled Test/Reference
\end{tabular} & LOR & Unit & \begin{tabular}{l}
TP07 1.0 \\
Soil \\
L23- \\
Au0012787 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
QC01 \\
Soil \\
L23- \\
Au0012788 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP01 0.0 \\
Soil \\
L23- \\
Au0012789 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP02 0.0 \\
Soil \\
L23- \\
Au0012790 \\
Jul 31, 2023
\end{tabular} \\
\hline \multicolumn{7}{|l|}{Polycyclic Aromatic Hydrocarbons} \\
\hline Benzo(a)pyrene TEQ (lower bound) * & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & \(<0.5\) & \(<0.5\) \\
\hline Benzo(a)pyrene TEQ (medium bound) * & 0.5 & mg/kg & - & - & 0.6 & 0.6 \\
\hline Benzo(a)pyrene TEQ (upper bound) * & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & 1.2 & 1.2 \\
\hline Acenaphthene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & \(<0.5\) & \(<0.5\) \\
\hline Acenaphthylene & 0.5 & mg/kg & - & - & \(<0.5\) & \(<0.5\) \\
\hline Anthracene & 0.5 & mg/kg & - & - & \(<0.5\) & \(<0.5\) \\
\hline Benz(a)anthracene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & \(<0.5\) & \(<0.5\) \\
\hline Benzo(a)pyrene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & \(<0.5\) & \(<0.5\) \\
\hline Benzo(b\&j)fluoranthene \({ }^{\text {N07 }}\) & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & \(<0.5\) & \(<0.5\) \\
\hline Benzo(g.h.i)perylene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & \(<0.5\) & \(<0.5\) \\
\hline Benzo(k)fluoranthene & 0.5 & mg/kg & - & - & \(<0.5\) & \(<0.5\) \\
\hline Chrysene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & \(<0.5\) & \(<0.5\) \\
\hline Dibenz(a.h)anthracene & 0.5 & mg/kg & - & - & \(<0.5\) & \(<0.5\) \\
\hline Fluoranthene & 0.5 & mg/kg & - & - & < 0.5 & < 0.5 \\
\hline Fluorene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & \(<0.5\) & \(<0.5\) \\
\hline Indeno(1.2.3-cd)pyrene & 0.5 & mg/kg & - & - & < 0.5 & <0.5 \\
\hline Naphthalene & 0.5 & mg/kg & - & - & \(<0.5\) & \(<0.5\) \\
\hline Phenanthrene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & <0.5 & \(<0.5\) \\
\hline Pyrene & 0.5 & mg/kg & - & - & \(<0.5\) & \(<0.5\) \\
\hline Total PAH* & 0.5 & mg/kg & - & - & < 0.5 & < 0.5 \\
\hline 2-Fluorobiphenyl (surr.) & 1 & \% & - & - & 122 & 100 \\
\hline p-Terphenyl-d14 (surr.) & 1 & \% & - & - & 140 & 97 \\
\hline \multicolumn{7}{|l|}{Total Recoverable Hydrocarbons - 2013 NEPM Fractions} \\
\hline TRH > C10-C16 & 50 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & \(<50\) & \(<50\) \\
\hline TRH > C16-C34 & 100 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & < 100 & < 100 \\
\hline TRH > C \(34-\mathrm{C} 40\) & 100 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & < 100 & < 100 \\
\hline TRH > C10-C40 (total)* & 100 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & <100 & <100 \\
\hline Arsenic & 5 & mg/kg & - & - & < 5 & < 5 \\
\hline Cadmium & 0.1 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & 0.1 & 0.1 \\
\hline Chromium & 1 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & 13 & 15 \\
\hline Copper & 1 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & 4.9 & 9.2 \\
\hline Lead & 1 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & 13 & 14 \\
\hline Mercury & 0.02 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & < 0.02 & < 0.02 \\
\hline Nickel & 1 & \(\mathrm{mg} / \mathrm{kg}\) & - & - & 3.0 & 4.2 \\
\hline Zinc & 1 & mg/kg & - & - & 14 & 70 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|l|l|l|l|}
\hline Client Sample ID \\
Sample Matrix \\
Eurofins Sample No. & & & \begin{tabular}{l} 
TP03 0.0 \\
Soil \\
L23- \\
Au0012791 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l} 
TP04 0.0 \\
Soil \\
L23- \\
Au0012792 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l} 
TP05 0.0 \\
Soil \\
L23- \\
Au0012793 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l} 
TP06 0.0 \\
Soil \\
L23- \\
Au0012794 \\
Jul 31, 2023
\end{tabular} \\
\hline Test/Reference
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Client Sample ID Sample Matrix \\
Eurofins Sample No. \\
Date Sampled \\
Test/Reference
\end{tabular} & LOR & Unit & \begin{tabular}{l}
TP03 0.0 \\
Soil \\
L23- \\
Au0012791 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP04 0.0 \\
Soil \\
L23- \\
Au0012792 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP05 0.0 \\
Soil \\
L23- \\
Au0012793 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP06 0.0 \\
Soil \\
L23- \\
Au0012794 \\
Jul 31, 2023
\end{tabular} \\
\hline \multicolumn{7}{|l|}{Total Recoverable Hydrocarbons - 1999 NEPM Fractions} \\
\hline TRH C6-C9 & 20 & \(\mathrm{mg} / \mathrm{kg}\) & \(<20\) & <20 & \(<20\) & \(<20\) \\
\hline TRH C10-C14 & 20 & \(\mathrm{mg} / \mathrm{kg}\) & <20 & <20 & <20 & <20 \\
\hline TRH C15-C28 & 50 & mg/kg & < 50 & < 50 & < 50 & < 50 \\
\hline TRH C29-C36 & 50 & \(\mathrm{mg} / \mathrm{kg}\) & < 50 & < 50 & < 50 & < 50 \\
\hline TRH C10-C36 (Total) & 50 & \(\mathrm{mg} / \mathrm{kg}\) & < 50 & < 50 & < 50 & < 50 \\
\hline \multicolumn{7}{|l|}{BTEX} \\
\hline Benzene & 0.1 & mg/kg & \(<0.1\) & \(<0.1\) & \(<0.1\) & \(<0.1\) \\
\hline Toluene & 0.1 & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.1\) & \(<0.1\) & <0.1 & < 0.1 \\
\hline Ethylbenzene & 0.1 & \(\mathrm{mg} / \mathrm{kg}\) & <0.1 & <0.1 & < 0.1 & \(<0.1\) \\
\hline m\&p-Xylenes & 0.2 & \(\mathrm{mg} / \mathrm{kg}\) & <0.2 & <0.2 & < 0.2 & <0.2 \\
\hline o-Xylene & 0.1 & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.1\) & \(<0.1\) & <0.1 & \(<0.1\) \\
\hline Xylenes - Total* & 0.3 & \(\mathrm{mg} / \mathrm{kg}\) & <0.3 & \(<0.3\) & <0.3 & <0.3 \\
\hline \multicolumn{7}{|l|}{BTEX} \\
\hline 4-Bromofluorobenzene (surr.) & 1 & \% & 99 & 93 & 98 & 97 \\
\hline \multicolumn{7}{|l|}{Total Recoverable Hydrocarbons - 2013 NEPM Fractions} \\
\hline Naphthalene \({ }^{\text {N02 }}\) & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) \\
\hline TRH >C10-C16 less Naphthalene (F2) \({ }^{\text {N01 }}\) & 50 & \(\mathrm{mg} / \mathrm{kg}\) & < 50 & < 50 & < 50 & < 50 \\
\hline TRH C6-C10 & 20 & \(\mathrm{mg} / \mathrm{kg}\) & <20 & <20 & <20 & <20 \\
\hline TRH C6-C10 less BTEX (F1) \({ }^{\text {N04 }}\) & 20 & \(\mathrm{mg} / \mathrm{kg}\) & <20 & <20 & <20 & \(<20\) \\
\hline \multicolumn{7}{|l|}{Polycyclic Aromatic Hydrocarbons} \\
\hline Benzo(a)pyrene TEQ (lower bound) * & 0.5 & mg/kg & < 0.5 & \(<0.5\) & < 0.5 & < 0.5 \\
\hline Benzo(a)pyrene TEQ (medium bound) * & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & 0.6 & 0.6 & 0.6 & 0.6 \\
\hline Benzo(a)pyrene TEQ (upper bound) * & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & 1.2 & 1.2 & 1.2 & 1.2 \\
\hline Acenaphthene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.5 & < 0.5 & < 0.5 & \(<0.5\) \\
\hline Acenaphthylene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & <0.5 & \(<0.5\) & < 0.5 & \(<0.5\) \\
\hline Anthracene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & <0.5 & < 0.5 & < 0.5 & \(<0.5\) \\
\hline Benz(a)anthracene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) \\
\hline Benzo(a)pyrene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) \\
\hline Benzo(b\&j)fluoranthene \({ }^{\text {N07 }}\) & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.5 & < 0.5 & < 0.5 & \(<0.5\) \\
\hline Benzo(g.h.i)perylene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.5 & \(<0.5\) & \(<0.5\) & \(<0.5\) \\
\hline Benzo(k)fluoranthene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.5 & < 0.5 & < 0.5 & <0.5 \\
\hline Chrysene & 0.5 & mg/kg & \(<0.5\) & \(<0.5\) & < 0.5 & \(<0.5\) \\
\hline Dibenz(a.h)anthracene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.5 & \(<0.5\) & < 0.5 & \(<0.5\) \\
\hline Fluoranthene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.5 & < 0.5 & < 0.5 & < 0.5 \\
\hline Fluorene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) & < 0.5 & < 0.5 & \(<0.5\) \\
\hline Indeno(1.2.3-cd)pyrene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.5 & \(<0.5\) & < 0.5 & \(<0.5\) \\
\hline Naphthalene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.5 & < 0.5 & < 0.5 & <0.5 \\
\hline Phenanthrene & 0.5 & mg/kg & < 0.5 & \(<0.5\) & < 0.5 & \(<0.5\) \\
\hline Pyrene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.5 & \(<0.5\) & < 0.5 & < 0.5 \\
\hline Total PAH* & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) & < 0.5 & < 0.5 & < 0.5 \\
\hline 2-Fluorobiphenyl (surr.) & 1 & \% & 136 & 106 & 90 & 94 \\
\hline p-Terphenyl-d14 (surr.) & 1 & \% & 141 & 120 & 101 & 105 \\
\hline \multicolumn{7}{|l|}{Total Recoverable Hydrocarbons - 2013 NEPM Fractions} \\
\hline TRH >C10-C16 & 50 & mg/kg & < 50 & < 50 & < 50 & < 50 \\
\hline TRH > C16-C34 & 100 & mg/kg & < 100 & < 100 & < 100 & < 100 \\
\hline TRH >C34-C40 & 100 & \(\mathrm{mg} / \mathrm{kg}\) & < 100 & < 100 & < 100 & < 100 \\
\hline TRH \(>\) C10-C40 (total)* & 100 & \(\mathrm{mg} / \mathrm{kg}\) & < 100 & < 100 & < 100 & < 100 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Client Sample ID Sample Matrix \\
Eurofins Sample No. \\
Date Sampled \\
Test/Reference
\end{tabular} & LOR & Unit & \begin{tabular}{l}
TP03 0.0 \\
Soil \\
L23- \\
Au0012791 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP04 0.0 \\
Soil \\
L23- \\
Au0012792 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP05 0.0 \\
Soil \\
L23- \\
Au0012793 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP06 0.0 \\
Soil \\
L23- \\
Au0012794 \\
Jul 31, 2023
\end{tabular} \\
\hline Arsenic & 5 & \(\mathrm{mg} / \mathrm{kg}\) & < 5 & < 5 & < 5 & < 5 \\
\hline Cadmium & 0.1 & \(\mathrm{mg} / \mathrm{kg}\) & 0.1 & 0.2 & < 0.1 & \(<0.1\) \\
\hline Chromium & 1 & \(\mathrm{mg} / \mathrm{kg}\) & 13 & 17 & 19 & 35 \\
\hline Copper & 1 & \(\mathrm{mg} / \mathrm{kg}\) & 5.3 & 6.5 & 6.2 & 9.4 \\
\hline Lead & 1 & \(\mathrm{mg} / \mathrm{kg}\) & 11 & 14 & 11 & 17 \\
\hline Mercury & 0.02 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.02 & < 0.02 & < 0.02 & 0.15 \\
\hline Nickel & 1 & \(\mathrm{mg} / \mathrm{kg}\) & 3.4 & 5.8 & 3.9 & 11 \\
\hline Zinc & 1 & mg/kg & 10 & 12 & 9.1 & 6.8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{Client Sample ID Sample Matrix} & \multirow[b]{5}{*}{LOR} & \multirow[b]{5}{*}{Unit} & \multirow[t]{5}{*}{\begin{tabular}{l}
TP07 0.0 \\
Soil \\
L23- \\
Au0012795 \\
Jul 31, 2023
\end{tabular}} \\
\hline & & & \\
\hline & & & \\
\hline Date Sampled & & & \\
\hline Test/Reference & & & \\
\hline \multicolumn{4}{|l|}{Sample Properties} \\
\hline \% Moisture & 1 & \% & 14 \\
\hline \multicolumn{4}{|l|}{Total Recoverable Hydrocarbons - 1999 NEPM Fractions} \\
\hline TRH C6-C9 & 20 & \(\mathrm{mg} / \mathrm{kg}\) & <20 \\
\hline TRH C10-C14 & 20 & \(\mathrm{mg} / \mathrm{kg}\) & <20 \\
\hline TRH C15-C28 & 50 & \(\mathrm{mg} / \mathrm{kg}\) & < 50 \\
\hline TRH C29-C36 & 50 & \(\mathrm{mg} / \mathrm{kg}\) & < 50 \\
\hline TRH C10-C36 (Total) & 50 & \(\mathrm{mg} / \mathrm{kg}\) & < 50 \\
\hline \multicolumn{4}{|l|}{BTEX} \\
\hline Benzene & 0.1 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.1 \\
\hline Toluene & 0.1 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.1 \\
\hline Ethylbenzene & 0.1 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.1 \\
\hline m\&p-Xylenes & 0.2 & \(\mathrm{mg} / \mathrm{kg}\) & <0.2 \\
\hline o-Xylene & 0.1 & \(\mathrm{mg} / \mathrm{kg}\) & <0.1 \\
\hline Xylenes - Total* & 0.3 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.3 \\
\hline \multicolumn{4}{|l|}{BTEX} \\
\hline 4-Bromofluorobenzene (surr.) & 1 & \% & 95 \\
\hline \multicolumn{4}{|l|}{Total Recoverable Hydrocarbons - 2013 NEPM Fractions} \\
\hline Naphthalene \({ }^{\text {N02 }}\) & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) \\
\hline TRH > C10-C16 less Naphthalene (F2) \({ }^{\text {N01 }}\) & 50 & \(\mathrm{mg} / \mathrm{kg}\) & < 50 \\
\hline TRH C6-C10 & 20 & \(\mathrm{mg} / \mathrm{kg}\) & <20 \\
\hline TRH C6-C10 less BTEX (F1) \({ }^{\text {N04 }}\) & 20 & \(\mathrm{mg} / \mathrm{kg}\) & <20 \\
\hline \multicolumn{4}{|l|}{Polycyclic Aromatic Hydrocarbons} \\
\hline Benzo(a)pyrene TEQ (lower bound) * & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.5 \\
\hline Benzo(a)pyrene TEQ (medium bound) * & 0.5 & mg/kg & 0.6 \\
\hline Benzo(a)pyrene TEQ (upper bound) * & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & 1.2 \\
\hline Acenaphthene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.5 \\
\hline Acenaphthylene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) \\
\hline Anthracene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) \\
\hline Benz(a)anthracene & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.5 \\
\hline Benzo(a)pyrene & 0.5 & mg/kg & < 0.5 \\
\hline Benzo(b\&j)fluoranthene \({ }^{\text {N07 }}\) & 0.5 & \(\mathrm{mg} / \mathrm{kg}\) & < 0.5 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|l|}
\hline \(\begin{array}{l}\text { Client Sample ID } \\
\text { Sample Matrix } \\
\text { Eurofins Sample No. } \\
\text { Date Sampled } \\
\text { Test/Reference }\end{array}\) & & & \multicolumn{1}{l|}{\(\begin{array}{l}\text { TP07 0.0 } \\
\text { Soil } \\
\text { L23- }\end{array}\)} \\
Au0012795
\end{tabular}\()\)

\section*{Sample History}

Where samples are submitted/analysed over several days, the last date of extraction is reported.
If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

\section*{Description}

Extraneous Material
- Method: LTM-GEN-7050/7070

Chromium Suite - NASSG (Excluding ANC)
- Method: LTM-GEN-7070 Chromium Reducible Sulfur Suite
\% Moisture
- Method: LTM-GEN-7080 Moisture
- Method: ARL135 Moisture in Solids

Total Recoverable Hydrocarbons - 1999 NEPM Fractions
- Method: LTM-ORG-2010 TRH C6-C40

BTEX
- Method: LTM-ORG-2010 TRH C6-C40

Total Recoverable Hydrocarbons - 2013 NEPM Fractions
- Method: LTM-ORG-2010 TRH C6-C40

Polycyclic Aromatic Hydrocarbons
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water

Total Recoverable Hydrocarbons - 2013 NEPM Fractions
- Method: LTM-ORG-2010 TRH C6-C40

Arsenic
- Method: ARL401/403 - Metals in Soil and Sediment by ICPOES/MS Cadmium
- Method: ARL401/403 - Metals in Soil and Sediment by ICPOES/MS

Chromium
- Method: ARL401/403 - Metals in Soil and Sediment by ICPOES/MS

\section*{Copper}
- Method: ARL401/403 - Metals in Soil and Sediment by ICPOES/MS Lead
- Method: ARL401/403 - Metals in Soil and Sediment by ICPOES/MS

Mercury
- Method: ARL No. 406 - Mercury by Cold Vapour Atomic Absorption Spectrophotometry Nickel
- Method: ARL401/403 - Metals in Soil and Sediment by ICPOES/MS Zinc
- Method: ARL401/403 - Metals in Soil and Sediment by ICPOES/MS
\begin{tabular}{|c|c|c|}
\hline Testing Site & Extracted & Holding Time \\
\hline Brisbane & Aug 10, 2023 & 6 Week \\
\hline Brisbane & Aug 10, 2023 & 6 Week \\
\hline Welshpool & Aug 04, 2023 & 14 Days \\
\hline Welshpool & Aug 08, 2023 & 14 Days \\
\hline Welshpool & Aug 08, 2023 & 14 Days \\
\hline Welshpool & Aug 08, 2023 & 14 Days \\
\hline Welshpool & Aug 08, 2023 & 14 Days \\
\hline Welshpool & Aug 08, 2023 & 14 Days \\
\hline Welshpool & Aug 08, 2023 & 180 Days \\
\hline Welshpool & Aug 08, 2023 & 180 Days \\
\hline Welshpool & Aug 08, 2023 & 180 Days \\
\hline Welshpool & Aug 08, 2023 & 180 Days \\
\hline Welshpool & Aug 08, 2023 & 180 Days \\
\hline Welshpool & Aug 08, 2023 & 28 Days \\
\hline Welshpool & Aug 08, 2023 & 180 Days \\
\hline Welshpool & Aug 08, 2023 & 180 Days \\
\hline
\end{tabular}
web: www.eurofins.com.au
email: EnviroSales@eurofins.com
\begin{tabular}{|c|c|c|c|c|c|}
\hline Melbourne & Geelong & Sydney & Canberra & Brisbane & Newcastle \\
\hline 6 Monterey Road & 19/8 Lewalan Street & 179 Magowar Road & Unit 1,2 Dacre Street & 1/21 Smallwood Place & 1/2 Frost Drive \\
\hline Dandenong South & Grovedale & Girraween & Mitchell & Murarrie & Mayfield West NSW 2304 \\
\hline VIC 3175 & VIC 3216 & NSW 2145 & ACT 2911 & QLD 4172 & Tel: +61 249688448 \\
\hline Tel: +61 385645000 & Tel: +61 385645000 & Tel: +61 299008400 & Tel: +61 261138091 & Tel: +6173902 4600 & NATA\# 1261 \\
\hline
\end{tabular} 6 Monterey Ro VIC 3175 Tel: +61 385645000 Tel: +61385645000 Girraween Thel: +61 261138091
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Company Name: Address:} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Galt Environment P/L \\
50 Edward Street \\
Osborne Park \\
WA 6017
\end{tabular}} & & & \multicolumn{3}{|r|}{\begin{tabular}{l}
Order No.: \\
Report \#: \\
Phone: \\
Fax:
\end{tabular}} & \multicolumn{2}{|r|}{\begin{tabular}{l}
WAG230 \\
1014072 \\
086272 \\
089285
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Project Name: Project ID:} & \multicolumn{3}{|l|}{\begin{tabular}{l}
MILLING \\
WAG230373
\end{tabular}} & & & & & & & \\
\hline & & & mple Detail & & &  &  &  &  &  &  \\
\hline \multicolumn{6}{|l|}{Perth Laboratory - NATA \# 2377 Site \# 2370} & X & X & X & & X & X \\
\hline \multicolumn{6}{|l|}{Brisbane Laboratory - NATA \# 1261 Site \# 20794} & & X & X & X & & \\
\hline \multicolumn{6}{|l|}{External Laboratory} & & & & & & \\
\hline No & Sample ID & Sample Date & Sampling Time & Matrix & LAB ID & & & & & & \\
\hline 1 & TP01 0.75 & Jul 31, 2023 & & Soil & L23-Au0012779 & & x & & X & & \\
\hline 2 & TP02 0.25 & Jul 31, 2023 & & Soil & L23-Au0012780 & & X & & X & & \\
\hline 3 & TP02 1.25 & Jul 31, 2023 & & Soil & L23-Au0012781 & & X & & X & & \\
\hline 4 & TP03 0.5 & Jul 31, 2023 & & Soil & L23-Au0012782 & & X & & X & & \\
\hline 5 & TP04 0.75 & Jul 31, 2023 & & Soil & L23-Au0012783 & & X & & X & & \\
\hline 6 & TP04 1.75 & Jul 31, 2023 & & Soil & L23-Au0012784 & & X & & X & & \\
\hline 7 & TP05 0.75 & Jul 31, 2023 & & Soil & L23-Au0012785 & & X & & X & & \\
\hline 8 & TP06 2.25 & Jul 31, 2023 & & Soil & L23-Au0012786 & & X & & X & & \\
\hline 9 & TP07 1.0 & Jul 31, 2023 & & Soil & L23-Au0012787 & & X & & X & & \\
\hline 10 & QC01 & Jul 31, 2023 & & Soil & L23-Au0012788 & & X & & X & & \\
\hline 11 & TP01 0.0 & Jul 31, 2023 & & Soil & L23-Au0012789 & X & & X & & X & x \\
\hline 12 & TP02 0.0 & Jul 31, 2023 & & Soil & L23-Au0012790 & X & & X & & X & X \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Melbourne & Geelong & Sydney & Canberra & Brisbane & Newcastle \\
\hline 6 Monterey Road & 19/8 Lewalan Street & 179 Magowar Road & Unit 1,2 Dacre Street & 1/21 Smallwood Place & 1/2 Frost Drive \\
\hline Dandenong South & Grovedale & Girraween & Mitchell & Murarrie & Mayfield West NSW 2304 \\
\hline VIC 3175 & VIC 3216 & NSW 2145 & ACT 2911 & QLD 4172 & Tel: +61 249688448 \\
\hline Tel: +61 385645000 & Tel: +61 385645000 & Tel: +61 299008400 & Tel: +61 261138091 & Tel: +61739024600 & NATA\# 1261 \\
\hline
\end{tabular} 6 Monterey Road VIC 3175 Tel: +61 385645000
NATA\# 1261 Site\# 1254 NATA 201 Sist. 125435645000 Girraween Tel: +61 29900840 ACT 2 Tel: +6126113809

Order No.: WAG230373
Phone: 086272020
Fax:

\section*{Environment Testing}

\section*{Internal Quality Control Review and Glossary}

\section*{General}
1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.

SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
Samples were analysed on an 'as received' basis.
Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
9. This report replaces any interim results previously issued.

\section*{Holding Times}

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).
For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.
For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.
Units
\(\mathrm{mg} / \mathrm{kg}\) : milligrams per kilogram
ppm: parts per million
org/100 mL: Organisms per 100 millilitres
CFU: Colony forming unit
\(\mathrm{mg} / \mathrm{L}\) : milligrams per litre
\(\mu \mathrm{g} / \mathrm{L}\) : micrograms per litre
ppb: parts per billion
NTU: Nephelometric Turbidity Units
\%: Percentage
MPN/100 mL: Most Probable Number of organisms per 100 millilitres

\section*{Terms}

APHA American Public Health Association
COC Chain of Custody
CP Client Parent - QC was performed on samples pertaining to this report
CRM Certified Reference Material (ISO17034) - reported as percent recovery.
Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR Limit of Reporting.
LCS
Method Blank
NCP
RPD
SPIKE
Addition of the analyte to the sample and reported as percentage recovery.
SRA
Surr - Surrogate
TBTO
Laboratory Control Sample - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. Relative Percent Difference between two Duplicate pieces of analysis.

Sample Receipt Advice
The addition of a like compound to the analyte target and reported as percentage recovery.
Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
\(\begin{array}{ll}\text { TCLP } & \text { Toxicity Characteristic Leaching Procedure } \\ \text { TEQ } & \text { Toxic Equivalency Quotient or Total Equivalence }\end{array}\)
QSM US Department of Defense Quality Systems Manual Version 5.4
US EPA United States Environmental Protection Agency
WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

\section*{QC - Acceptance Criteria}

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented
RPD Duplicates: Global RPD Duplicates Acceptance Criteria is \(30 \%\) however the following acceptance guidelines are equally applicable:
Results <10 times the LOR: No Limit
Results between 10-20 times the LOR: RPD must lie between 0-50\%
Results >20 times the LOR: RPD must lie between 0-30\%
NOTE: pH duplicates are reported as a range not as RPD
Surrogate Recoveries: Recoveries must lie between 20-130\% for Speciated Phenols \& 50-150\% for PFAS. SVOCs recoveries 20 - 150\%
PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

\section*{QC Data General Comments}
1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a \(1: 10\) ratio. The Parent and Duplicate data shown is not data from your samples.
3. pH and Free Chlorine analysed in the laboratory - Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time.Analysis will begin as soon as possible after sample receipt.
4. Recovery Data (Spikes \& Surrogates) - where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

\section*{Quality Control Results}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Test & Units & Result 1 & & & Acceptance Limits & Pass Limits & Qualifying Code \\
\hline pH-KCL (NLM-3.1) & \% & 91 & & & 80-120 & Pass & \\
\hline Titratable Actual Acidity (NLM-3.2) & \% & 103 & & & 80-120 & Pass & \\
\hline \multicolumn{8}{|l|}{LCS - \% Recovery} \\
\hline \multicolumn{8}{|l|}{Potential Acidity - Chromium Reducible Sulfur} \\
\hline Chromium Reducible Sulfur (s-SCr) (NLM-2.1) & \% & 97 & & & 80-120 & Pass & \\
\hline \multicolumn{8}{|l|}{LCS - \% Recovery} \\
\hline \multicolumn{8}{|l|}{Total Recoverable Hydrocarbons - 1999 NEPM Fractions} \\
\hline TRH C6-C9 & \% & 105 & & & 70-130 & Pass & \\
\hline TRH C10-C14 & \% & 98 & & & 70-130 & Pass & \\
\hline \multicolumn{8}{|l|}{LCS - \% Recovery} \\
\hline \multicolumn{8}{|l|}{BTEX} \\
\hline Benzene & \% & 87 & & & 70-130 & Pass & \\
\hline Toluene & \% & 111 & & & 70-130 & Pass & \\
\hline Ethylbenzene & \% & 111 & & & 70-130 & Pass & \\
\hline m\&p-Xylenes & \% & 103 & & & 70-130 & Pass & \\
\hline o-Xylene & \% & 120 & & & 70-130 & Pass & \\
\hline Xylenes - Total* & \% & 109 & & & 70-130 & Pass & \\
\hline \multicolumn{8}{|l|}{LCS - \% Recovery} \\
\hline \multicolumn{8}{|l|}{Total Recoverable Hydrocarbons - 2013 NEPM Fractions} \\
\hline Naphthalene & \% & 104 & & & 70-130 & Pass & \\
\hline TRH C6-C10 & \% & 109 & & & 70-130 & Pass & \\
\hline \multicolumn{8}{|l|}{LCS - \% Recovery} \\
\hline \multicolumn{8}{|l|}{Polycyclic Aromatic Hydrocarbons} \\
\hline Acenaphthene & \% & 105 & & & 70-130 & Pass & \\
\hline Acenaphthylene & \% & 95 & & & 70-130 & Pass & \\
\hline Anthracene & \% & 96 & & & 70-130 & Pass & \\
\hline Benz(a)anthracene & \% & 85 & & & 70-130 & Pass & \\
\hline Benzo(a)pyrene & \% & 81 & & & 70-130 & Pass & \\
\hline Benzo(b\&j)fluoranthene & \% & 82 & & & 70-130 & Pass & \\
\hline Benzo(g.h.i)perylene & \% & 97 & & & 70-130 & Pass & \\
\hline Benzo(k)fluoranthene & \% & 87 & & & 70-130 & Pass & \\
\hline Chrysene & \% & 93 & & & 70-130 & Pass & \\
\hline Dibenz(a.h)anthracene & \% & 86 & & & 70-130 & Pass & \\
\hline Fluoranthene & \% & 87 & & & 70-130 & Pass & \\
\hline Fluorene & \% & 93 & & & 70-130 & Pass & \\
\hline Indeno(1.2.3-cd)pyrene & \% & 84 & & & 70-130 & Pass & \\
\hline Naphthalene & \% & 94 & & & 70-130 & Pass & \\
\hline Phenanthrene & \% & 97 & & & 70-130 & Pass & \\
\hline Pyrene & \% & 87 & & & 70-130 & Pass & \\
\hline \multicolumn{8}{|l|}{LCS - \% Recovery} \\
\hline \multicolumn{8}{|l|}{Total Recoverable Hydrocarbons - 2013 NEPM Fractions} \\
\hline TRH >C10-C16 & \% & 94 & & & 70-130 & Pass & \\
\hline \multicolumn{8}{|l|}{LCS - \% Recovery} \\
\hline Arsenic & \% & 107 & & & 80-120 & Pass & \\
\hline Cadmium & \% & 101 & & & 80-120 & Pass & \\
\hline Chromium & \% & 80 & & & 80-120 & Pass & \\
\hline Copper & \% & 82 & & & 80-120 & Pass & \\
\hline Lead & \% & 83 & & & 80-120 & Pass & \\
\hline Mercury & \% & 81 & & & 60-120 & Pass & \\
\hline Nickel & \% & 82 & & & 80-120 & Pass & \\
\hline Zinc & \% & 107 & & & 80-120 & Pass & \\
\hline \multicolumn{8}{|l|}{CRM - \% Recovery} \\
\hline \multicolumn{8}{|l|}{Total Recoverable Hydrocarbons - 2013 NEPM Fractions} \\
\hline TRH > C10-C16 & \% & 100 & & & 70-130 & Pass & \\
\hline TRH > C \(34-\mathrm{C} 40\) & \% & 92 & & & 70-130 & Pass & \\
\hline
\end{tabular}

ARL


ARL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Test & Lab Sample ID & QA Source & Units & Result 1 & & & Acceptance Limits & Pass Limits & Qualifying Code \\
\hline \multicolumn{10}{|l|}{Duplicate} \\
\hline \multicolumn{4}{|l|}{Net Acidity (Excluding ANC)} & Result 1 & Result 2 & RPD & & & \\
\hline CRS Suite - Net Acidity - NASSG (Excluding ANC) & L23-Au0012779 & CP & \% S & \(<0.02\) & N/A & N/A & 30\% & Pass & \\
\hline \begin{tabular}{l}
CRS Suite - Net Acidity - NASSG \\
(Excluding ANC)
\end{tabular} & L23-Au0012779 & CP & \(\mathrm{mol} \mathrm{H}+/ \mathrm{t}\) & \(<10\) & N/A & N/A & 20\% & Pass & \\
\hline CRS Suite - Liming Rate - NASSG (Excluding ANC) & L23-Au0012779 & CP & kg CaCO3/t & < 1 & N/A & N/A & 30\% & Pass & \\
\hline \multicolumn{10}{|l|}{Duplicate} \\
\hline \multicolumn{4}{|l|}{Actual Acidity (NLM-3.2)} & Result 1 & Result 2 & RPD & & & \\
\hline pH-KCL (NLM-3.1) & L23-Au0012779 & CP & pH Units & 9.1 & 9.2 & <1 & 20\% & Pass & \\
\hline Titratable Actual Acidity (NLM-3.2) & L23-Au0012779 & CP & mol \(\mathrm{H}+/ \mathrm{t}\) & <2 & <2 & <1 & 20\% & Pass & \\
\hline Titratable Actual Acidity (NLM-3.2) & L23-Au0012779 & CP & \% pyrite S & \(<0.003\) & \(<0.003\) & \(<1\) & 30\% & Pass & \\
\hline \multicolumn{10}{|l|}{Duplicate} \\
\hline \multicolumn{4}{|l|}{Potential Acidity - Chromium Reducible Sulfur} & Result 1 & Result 2 & RPD & & & \\
\hline \begin{tabular}{l}
Chromium Reducible Sulfur (s-SCr) \\
(NLM-2.1)
\end{tabular} & L23-Au0012779 & CP & \% S & < 0.005 & < 0.005 & \(<1\) & 20\% & Pass & \\
\hline Chromium Reducible Sulfur (a-SCr) (NLM-2.1) & L23-Au0012779 & CP & mol H+/t & \(<3\) & \(<3\) & \(<1\) & 30\% & Pass & \\
\hline \multicolumn{10}{|l|}{Duplicate} \\
\hline \multicolumn{4}{|l|}{Extractable Sulfur} & Result 1 & Result 2 & RPD & & & \\
\hline Sulfur - KCI Extractable & L23-Au0012779 & CP & \% S & N/A & N/A & N/A & 30\% & Pass & \\
\hline HCl Extractable Sulfur & L23-Au0012779 & CP & \% S & N/A & N/A & N/A & 20\% & Pass & \\
\hline \multicolumn{10}{|l|}{Duplicate} \\
\hline \multicolumn{4}{|l|}{Retained Acidity (S-NAS)} & Result 1 & Result 2 & RPD & & & \\
\hline Net Acid soluble sulfur (SNAS) NLM-4.1 & L23-Au0012779 & CP & \% S & N/A & N/A & N/A & 30\% & Pass & \\
\hline Net Acid soluble sulfur (s-SNAS) NLM-4.1 & L23-Au0012779 & CP & \% S & N/A & N/A & N/A & 30\% & Pass & \\
\hline Net Acid soluble sulfur (a-SNAS) NLM-4.1 & L23-Au0012779 & CP & mol H+/t & N/A & N/A & N/A & 30\% & Pass & \\
\hline \multicolumn{10}{|l|}{Duplicate} \\
\hline \multicolumn{4}{|l|}{Acid Neutralising Capacity (ANCbt)} & Result 1 & Result 2 & RPD & & & \\
\hline Acid Neutralising Capacity -
(ANCbt) (NLM-5.2) & L23-Au0012779 & CP & \% CaCO 3 & 6.9 & 7.1 & 2.4 & 20\% & Pass & \\
\hline Acid Neutralising Capacity - (sANCbt) (NLM-5.2) & L23-Au0012779 & CP & \% S & 2.2 & 2.3 & 2.4 & 30\% & Pass & \\
\hline ANC Fineness Factor & L23-Au0012779 & CP & factor & 1.5 & 1.5 & <1 & 30\% & Pass & \\
\hline \multicolumn{10}{|l|}{Duplicate} \\
\hline \multicolumn{4}{|l|}{Net Acidity (Including ANC)} & Result 1 & Result 2 & RPD & & & \\
\hline CRS Suite - Net Acidity - NASSG (Including ANC) & L23-Au0012779 & CP & \% S & \(<0.02\) & \(<0.02\) & \(<1\) & 30\% & Pass & \\
\hline CRS Suite - Net Acidity - NASSG (Including ANC) & L23-Au0012779 & CP & \(\mathrm{mol} \mathrm{H}+/ \mathrm{t}\) & \(<10\) & \(<10\) & \(<1\) & 30\% & Pass & \\
\hline CRS Suite - Liming Rate - NASSG (Including ANC) & L23-Au0012779 & CP & kg CaCO3/t & \(<1\) & \(<1\) & \(<1\) & 30\% & Pass & \\
\hline \multicolumn{10}{|l|}{Duplicate} \\
\hline \multicolumn{4}{|l|}{Net Acidity (Excluding ANC)} & Result 1 & Result 2 & RPD & & & \\
\hline CRS Suite - Net Acidity - NASSG
(Excluding ANC) & L23-Au0012788 & CP & \% S & \(<0.02\) & N/A & N/A & 30\% & Pass & \\
\hline CRS Suite - Net Acidity - NASSG (Excluding ANC) & L23-Au0012788 & CP & mol H+/t & \(<10\) & N/A & N/A & 20\% & Pass & \\
\hline CRS Suite - Liming Rate - NASSG (Excluding ANC) & L23-Au0012788 & CP & kg CaCO3/t & <1 & N/A & N/A & 30\% & Pass & \\
\hline \multicolumn{10}{|l|}{Duplicate} \\
\hline \multicolumn{4}{|l|}{Actual Acidity (NLM-3.2)} & Result 1 & Result 2 & RPD & & & \\
\hline pH-KCL (NLM-3.1) & L23-Au0012788 & CP & pH Units & 9.0 & 8.8 & 2.3 & 20\% & Pass & \\
\hline Titratable Actual Acidity (NLM-3.2) & L23-Au0012788 & CP & mol \(\mathrm{H}+/ \mathrm{t}\) & <2 & <2 & <1 & 20\% & Pass & \\
\hline Titratable Actual Acidity (NLM-3.2) & L23-Au0012788 & CP & \% pyrite S & < 0.003 & \(<0.003\) & <1 & 30\% & Pass & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Duplicate} & \\
\hline \multicolumn{4}{|l|}{Potential Acidity - Chromium Reducible Sulfur} & Result 1 & Result 2 & RPD & & & \\
\hline \begin{tabular}{l}
Chromium Reducible Sulfur (s-SCr) \\
(NLM-2.1)
\end{tabular} & L23-Au0012788 & CP & \% S & \(<0.005\) & \(<0.005\) & \(<1\) & 20\% & Pass & \\
\hline \begin{tabular}{l}
Chromium Reducible Sulfur (a-SCr) \\
(NLM-2.1)
\end{tabular} & L23-Au0012788 & CP & mol H+/t & \(<3\) & \(<3\) & \(<1\) & 30\% & Pass & \\
\hline \multicolumn{9}{|l|}{Duplicate} & \\
\hline \multicolumn{4}{|l|}{Extractable Sulfur} & Result 1 & Result 2 & RPD & & & \\
\hline Sulfur - KCI Extractable & L23-Au0012788 & CP & \% S & N/A & N/A & N/A & 30\% & Pass & \\
\hline HCl Extractable Sulfur & L23-Au0012788 & CP & \% S & N/A & N/A & N/A & 20\% & Pass & \\
\hline \multicolumn{9}{|l|}{Duplicate} & \\
\hline \multicolumn{4}{|l|}{Retained Acidity (S-NAS)} & Result 1 & Result 2 & RPD & & & \\
\hline Net Acid soluble sulfur (SNAS) NLM-4.1 & L23-Au0012788 & CP & \% S & N/A & N/A & N/A & 30\% & Pass & \\
\hline Net Acid soluble sulfur (s-SNAS) NLM-4.1 & L23-Au0012788 & CP & \% S & N/A & N/A & N/A & 30\% & Pass & \\
\hline Net Acid soluble sulfur (a-SNAS) NLM-4.1 & L23-Au0012788 & CP & \(\mathrm{mol} \mathrm{H}+/ \mathrm{t}\) & N/A & N/A & N/A & 30\% & Pass & \\
\hline \multicolumn{9}{|l|}{Duplicate} & \\
\hline \multicolumn{4}{|l|}{Acid Neutralising Capacity (ANCbt)} & Result 1 & Result 2 & RPD & & & \\
\hline Acid Neutralising Capacity (ANCbt) (NLM-5.2) & L23-Au0012788 & CP & \% CaCO 3 & 4.7 & 4.7 & \(<1\) & 20\% & Pass & \\
\hline Acid Neutralising Capacity - (sANCbt) (NLM-5.2) & L23-Au0012788 & CP & \% S & 1.5 & 1.5 & <1 & 30\% & Pass & \\
\hline ANC Fineness Factor & L23-Au0012788 & CP & factor & 1.5 & 1.5 & \(<1\) & 30\% & Pass & \\
\hline \multicolumn{9}{|l|}{Duplicate} & \\
\hline \multicolumn{4}{|l|}{Net Acidity (Including ANC)} & Result 1 & Result 2 & RPD & & & \\
\hline CRS Suite - Net Acidity - NASSG
(Including ANC) & L23-Au0012788 & CP & \% S & \(<0.02\) & N/A & N/A & 30\% & Pass & \\
\hline CRS Suite - Net Acidity - NASSG (Including ANC) & L23-Au0012788 & CP & \(\mathrm{mol} \mathrm{H}+/ \mathrm{t}\) & \(<10\) & N/A & N/A & 30\% & Pass & \\
\hline CRS Suite - Liming Rate - NASSG (Including ANC) & L23-Au0012788 & CP & kg CaCO3/t & < 1 & N/A & N/A & 30\% & Pass & \\
\hline \multicolumn{9}{|l|}{Duplicate} & \\
\hline \multicolumn{4}{|l|}{Sample Properties} & Result 1 & Result 2 & RPD & & & \\
\hline \% Moisture & L23-Au0012788 & CP & \% & 11 & 10 & 6.9 & 30\% & Pass & \\
\hline \multicolumn{9}{|l|}{Duplicate} & \\
\hline & & & & Result 1 & Result 2 & RPD & & & \\
\hline Arsenic & L23-Au0009521 & NCP & \(\mathrm{mg} / \mathrm{kg}\) & < 5 & < 5 & \(<1\) & 20\% & Pass & \\
\hline Cadmium & L23-Au0009521 & NCP & \(\mathrm{mg} / \mathrm{kg}\) & 0.1 & 0.1 & 4.1 & 20\% & Pass & \\
\hline Chromium & L23-Au0009521 & NCP & \(\mathrm{mg} / \mathrm{kg}\) & <1 & <1 & <1 & 20\% & Pass & \\
\hline Copper & L23-Au0009521 & NCP & \(\mathrm{mg} / \mathrm{kg}\) & \(<1\) & \(<1\) & <1 & 20\% & Pass & \\
\hline Lead & L23-Au0009521 & NCP & \(\mathrm{mg} / \mathrm{kg}\) & <1 & <1 & <1 & 20\% & Pass & \\
\hline Mercury & L23-Au0009521 & NCP & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.02\) & \(<0.02\) & <1 & 30\% & Pass & \\
\hline Nickel & L23-Au0009521 & NCP & \(\mathrm{mg} / \mathrm{kg}\) & <1 & 1.0 & 49 & 20\% & Fail & Q15 \\
\hline Zinc & L23-Au0009521 & NCP & \(\mathrm{mg} / \mathrm{kg}\) & 2.0 & 3.6 & 58 & 20\% & Fail & Q15 \\
\hline \multicolumn{9}{|l|}{Duplicate} & \\
\hline \multicolumn{4}{|l|}{Sample Properties} & Result 1 & Result 2 & RPD & & & \\
\hline \% Moisture & L23-Au0012794 & CP & \% & 7.7 & 7.6 & 1.1 & 30\% & Pass & \\
\hline \multicolumn{9}{|l|}{Duplicate} & \\
\hline \multicolumn{4}{|l|}{Total Recoverable Hydrocarbons - 1999 NEPM Fractions} & Result 1 & Result 2 & RPD & & & \\
\hline TRH C6-C9 & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & <20 & \(<20\) & <1 & 30\% & Pass & \\
\hline TRH C10-C14 & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & \(<20\) & \(<20\) & <1 & 30\% & Pass & \\
\hline TRH C15-C28 & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & \(<50\) & \(<50\) & <1 & 30\% & Pass & \\
\hline TRH C29-C36 & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & < 50 & < 50 & <1 & 30\% & Pass & \\
\hline
\end{tabular}

ARL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Duplicate} & \\
\hline \multicolumn{4}{|l|}{BTEX} & Result 1 & Result 2 & RPD & & & \\
\hline Benzene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.1\) & \(<0.1\) & <1 & 30\% & Pass & \\
\hline Toluene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.1\) & < 0.1 & <1 & 30\% & Pass & \\
\hline Ethylbenzene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.1\) & <0.1 & <1 & 30\% & Pass & \\
\hline m\&p-Xylenes & L23-Au0012795 & CP & mg/kg & \(<0.2\) & <0.2 & <1 & 30\% & Pass & \\
\hline o-Xylene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.1\) & <0.1 & <1 & 30\% & Pass & \\
\hline Xylenes - Total* & L23-Au0012795 & CP & mg/kg & \(<0.3\) & <0.3 & <1 & 30\% & Pass & \\
\hline \multicolumn{9}{|l|}{Duplicate} & \\
\hline \multicolumn{4}{|l|}{Total Recoverable Hydrocarbons - 2013 NEPM Fractions} & Result 1 & Result 2 & RPD & & & \\
\hline Naphthalene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) & \(<0.5\) & \(<1\) & 30\% & Pass & \\
\hline TRH C6-C10 & L23-Au0012795 & CP & mg/kg & <20 & <20 & <1 & 30\% & Pass & \\
\hline \multicolumn{9}{|l|}{Duplicate} & \\
\hline \multicolumn{4}{|l|}{Polycyclic Aromatic Hydrocarbons} & Result 1 & Result 2 & RPD & & & \\
\hline Acenaphthene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) & <0.5 & <1 & 30\% & Pass & \\
\hline Acenaphthylene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) & <0.5 & \(<1\) & 30\% & Pass & \\
\hline Anthracene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) & <0.5 & <1 & 30\% & Pass & \\
\hline Benz(a)anthracene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) & <0.5 & <1 & 30\% & Pass & \\
\hline Benzo(a)pyrene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & <0.5 & <0.5 & <1 & 30\% & Pass & \\
\hline Benzo(b\&j)fluoranthene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) & <0.5 & <1 & 30\% & Pass & \\
\hline Benzo(g.h.i)perylene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) & <0.5 & <1 & 30\% & Pass & \\
\hline Benzo(k)fluoranthene & L23-Au0012795 & CP & mg/kg & \(<0.5\) & < 0.5 & <1 & 30\% & Pass & \\
\hline Chrysene & L23-Au0012795 & CP & mg/kg & \(<0.5\) & < 0.5 & <1 & 30\% & Pass & \\
\hline Dibenz(a.h)anthracene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & <0.5 & <0.5 & <1 & 30\% & Pass & \\
\hline Fluoranthene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) & <0.5 & <1 & 30\% & Pass & \\
\hline Fluorene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) & <0.5 & <1 & 30\% & Pass & \\
\hline Indeno(1.2.3-cd)pyrene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & <0.5 & <0.5 & <1 & 30\% & Pass & \\
\hline Naphthalene & L23-Au0012795 & CP & mg/kg & \(<0.5\) & < 0.5 & <1 & 30\% & Pass & \\
\hline Phenanthrene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & \(<0.5\) & \(<0.5\) & \(<1\) & 30\% & Pass & \\
\hline Pyrene & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & <0.5 & < 0.5 & <1 & 30\% & Pass & \\
\hline \multicolumn{9}{|l|}{Duplicate} & \\
\hline \multicolumn{4}{|l|}{Total Recoverable Hydrocarbons - 2013 NEPM Fractions} & Result 1 & Result 2 & RPD & & & \\
\hline TRH > C10-C16 & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & < 50 & < 50 & <1 & 30\% & Pass & \\
\hline TRH > C16-C34 & L23-Au0012795 & CP & \(\mathrm{mg} / \mathrm{kg}\) & < 100 & < 100 & \(<1\) & 30\% & Pass & \\
\hline TRH > \(234-\mathrm{C} 40\) & L23-Au0012795 & CP & mg/kg & < 100 & < 100 & <1 & 30\% & Pass & \\
\hline
\end{tabular}

ARL

\section*{Comments}

\section*{Sample Integrity}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Custody Seals Intact (if used)} & N/A \\
\hline \multicolumn{2}{|l|}{Attempt to Chill was evident} & Yes \\
\hline \multicolumn{2}{|l|}{Sample correctly preserved} & Yes \\
\hline \multicolumn{2}{|l|}{Appropriate sample containers have been used} & Yes \\
\hline \multicolumn{2}{|l|}{Sample containers for volatile analysis received with minimal headspace} & N/A \\
\hline \multicolumn{2}{|l|}{Samples received within HoldingTime} & Yes \\
\hline \multicolumn{2}{|l|}{Some samples have been subcontracted} & No \\
\hline \multicolumn{3}{|l|}{Qualifier Codes/Comments} \\
\hline Code & \multicolumn{2}{|l|}{Description} \\
\hline N01 & \multicolumn{2}{|l|}{F2 is determined by arithmetically subtracting the "naphthalene" value from the " \(>\mathrm{C} 10-\mathrm{C} 16\) " value. The naphthalene value used in this calculation is obtained from volatiles (Purge \& Trap analysis).} \\
\hline N02 & \multicolumn{2}{|l|}{Where we have reported both volatile (P\&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.} \\
\hline N04 & \multicolumn{2}{|l|}{F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.} \\
\hline N07 & \multicolumn{2}{|l|}{Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs} \\
\hline Q08 & \multicolumn{2}{|l|}{The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.} \\
\hline Q15 & \multicolumn{2}{|l|}{The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.} \\
\hline S01 & \multicolumn{2}{|l|}{Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime ( CaCO 3 ) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil' multiply 'reported results' x 'wet bulk density of soil in \(\mathrm{t} / \mathrm{m} 3^{\prime}\)} \\
\hline S02 & \multicolumn{2}{|l|}{Retained Acidity is Reported when the pHKCl is less than pH 4.5} \\
\hline S03 & \multicolumn{2}{|l|}{Acid Neutralising Capacity is only required if the pHKCl if greater than or equal to pH 6.5} \\
\hline S04 & Acid Sulfate Soil Samples have a 24 hour holding time unless frozen or dried within that period & \\
\hline
\end{tabular}

\section*{Authorised by:}
Andrew Harvey Analytical Services Manager

Douglas Todd Senior Analyst-Sample Properties
Jonathon Angell Senior Analyst-Sample Properties
Jonathon Angell Senior Analyst-SPOCAS
Patrick Patfield Senior Analyst-Organic
Patrick Patfield Senior Analyst-Volatile
Rhys Thomas Senior Analyst-Asbestos
Sean Sangster
Senior Analyst-Metal


\section*{Kim Rodgers}

\section*{General Manager}

Final Report - this report replaces any previously issued Report
- Indicates Not Requested
* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request
Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

\author{
Galt Environment P/L \\ 50 Edward Street \\ Osborne Park \\ WA 6017
}

NATA Accredited
Accreditation Number 2377
Site Number 2370
Accredited for compliance with ISO/IEC 17025-Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the quivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

\author{
Attention: \\ - ALL SRA/Results \\ Report \\ Project Name \\ Project ID \\ Received Date \\ Date Reported \\ 1014072-AIS \\ MILLING \\ WAG230373 \\ Aug 04, 2023 \\ Aug 14, 2023
}

\section*{Methodology:}

Asbestos Fibre Identification

Unknown Mineral Fibres

Conducted in accordance with the Australian Standard AS 4964-2004: Method for the Qualitative Identification of Asbestos in Bulk Samples (AS 4964-2004) and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.
NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.
NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS 4964-2004 requires that these are reported as UMF unless confirmed by an independent technique.

The whole sample submitted is first dried and then passed through a 10 mm sieve followed by a 2 mm sieve. All fibrous matter greater than 10 mm , greater than 2 mm as well as the material passing through the 2 mm sieve are retained and analysed for the presence of asbestos. If the sub 2 mm fraction is greater than approximately 30 to 60 g then a subsampling routine based on ISO 3082:2009(E) is employed.
NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be subsampled for trace analysis, in accordance with AS 4964-2004.

The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964-2004.
NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

The performance limitation of the AS 4964-2004 method for non-homogeneous samples is around \(0.1 \mathrm{~g} / \mathrm{kg}\) (equivalent to \(0.01 \%(\mathrm{w} / \mathrm{w})\) ). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of \(0.01 \% ~(w / w)\).
The NEPM screening level of \(0.001 \%(\mathrm{w} / \mathrm{w})\) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL ) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964-2004 and hence NATA Accreditation does not cover the performance of this service.
NOTE: NATA News March 2014, p.7, states in relation to AS 4964-2004: "This is a qualitative method with a nominal reporting limit of \(0.01 \%\) " and that currently in Australia "there is no validated method available for the quantification of asbestos".
Reference is made to the NATA Specific Accreditation Criteria: ISO/IEC 17025 Application Document, Life Sciences Annex, Asbestos sampling and testing This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the Government of Western Australia Department of Health Guidelines for the Assessment, Remediation and Management of Asbestos Contaminated Sites in Western Australia(WA DoH).

\section*{ARL}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Client Sample ID \\
Sample Matrix \\
Eurofins Sample No. \\
Date Sampled
\end{tabular} & & & \begin{tabular}{l}
TP01 0.0 \\
Soil \\
23-Au0012789 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP02 0.0 \\
Soil \\
23-Au0012790 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP03 0.0 \\
Soil \\
23-Au0012791 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP04 0.0 \\
Soil \\
23-Au0012792 \\
Jul 31, 2023
\end{tabular} \\
\hline \multicolumn{7}{|l|}{Asbestos in Soils (AS 4964-2004)} \\
\hline Sample Description & - & Comment & Brown coarse grain soil and rocks \\
\hline Total Dry Mass & 0.1 & g & 643 & 535 & 681 & 535 \\
\hline Total Analytical Fraction & 0.1 & g & 643 & 535 & 681 & 535 \\
\hline Asbestos Detected & - & Yes/No & No & No & No & No \\
\hline Materials Identified & - & Comment & N/A & N/A & N/A & N/A \\
\hline Fibres Identified & - & Comment & Organic & Organic & Organic & Organic \\
\hline Asbestos Content (as asbestos) & 0.01 & \% w/w & < 0.01 & < 0.01 & <0.01 & < 0.01 \\
\hline Trace Analysis & 0.1 & g/kg & No trace asbestos detected \\
\hline
\end{tabular}

\section*{ARL}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Client Sample ID \\
Sample Matrix \\
Eurofins Sample No. \\
Date Sampled
\end{tabular} & LOR & Unit & \begin{tabular}{l}
TP05 0.0 \\
Soil \\
23-Au0012793 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP06 0.0 \\
Soil \\
23-Au0012794 \\
Jul 31, 2023
\end{tabular} & \begin{tabular}{l}
TP07 0.0 \\
Soil \\
23-Au0012795 \\
Jul 31, 2023
\end{tabular} \\
\hline \multicolumn{6}{|l|}{Asbestos in Soils (AS 4964-2004)} \\
\hline Sample Description & - & Comment & Brown coarse grain soil and rocks & Brown coarse grain soil and rocks & Brown coarse grain soil and rocks \\
\hline Total Dry Mass & 0.1 & g & 740 & 246 & 762 \\
\hline Total Analytical Fraction & 0.1 & g & 740 & 246 & 762 \\
\hline Asbestos Detected & - & Yes/No & No & No & No \\
\hline Materials Identified & - & Comment & N/A & N/A & N/A \\
\hline Fibres Identified & - & Comment & Organic & Organic & Organic \\
\hline Asbestos Content (as asbestos) & 0.01 & \% w/w & < 0.01 & < 0.01 & \(<0.01\) \\
\hline Trace Analysis & 0.1 & \(\mathrm{g} / \mathrm{kg}\) & No trace asbestos detected & No trace asbestos detected & No trace asbestos detected \\
\hline
\end{tabular}

\section*{Sample History}

Where samples are submitted/analysed over several days, the last date of extraction is reported.
If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

\footnotetext{
Description
LTM-ASB-8020 Method for the Qualitative Identification of Asbestos in Bulk Samples (AS 4964-2004)
}
\begin{tabular}{lll} 
Testing Site & Extracted & Holding Time \\
Welshpool & Aug 04, 2023 & Indefinite
\end{tabular}
\begin{tabular}{ll} 
Order No.: & WAG230373 \\
Report \#: & 1014072 \\
Phone: & 0862720200 \\
Fax: & 0892858444
\end{tabular}

Received:
Due:
Priority:
Contact Name:

Aug 4, 2023 12:17 PM
Aug 11, 2023
5 Day
ALL SRA/Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Sample Detail} &  &  &  &  &  &  \\
\hline \multicolumn{6}{|l|}{Perth Laboratory - NATA \# 2377 Site \# 2370} & X & X & x & & X & x \\
\hline \multicolumn{6}{|l|}{Brisbane Laboratory - NATA \# 1261 Site \# 20794} & & X & X & X & & \\
\hline \multicolumn{6}{|l|}{External Laboratory} & & & & & & \\
\hline No & Sample ID & Sample Date & Sampling Time & Matrix & LAB ID & & & & & & \\
\hline 1 & TP01 0.75 & Jul 31, 2023 & & Soil & L23-Au0012779 & & x & & x & & \\
\hline 2 & TP02 0.25 & Jul 31, 2023 & & Soil & L23-Au0012780 & & X & & X & & \\
\hline 3 & TP02 1.25 & Jul 31, 2023 & & Soil & L23-Au0012781 & & X & & X & & \\
\hline 4 & TP03 0.5 & Jul 31, 2023 & & Soil & L23-Au0012782 & & X & & X & & \\
\hline 5 & TP04 0.75 & Jul 31, 2023 & & Soil & L23-Au0012783 & & X & & X & & \\
\hline 6 & TP04 1.75 & Jul 31, 2023 & & Soil & L23-Au0012784 & & X & & X & & \\
\hline 7 & TP05 0.75 & Jul 31, 2023 & & Soil & L23-Au0012785 & & X & & X & & \\
\hline 8 & TP06 2.25 & Jul 31, 2023 & & Soil & L23-Au0012786 & & X & & X & & \\
\hline 9 & TP07 1.0 & Jul 31, 2023 & & Soil & L23-Au0012787 & & X & & X & & \\
\hline 10 & QC01 & Jul 31, 2023 & & Soil & L23-Au0012788 & & X & & X & & \\
\hline 11 & TP01 0.0 & Jul 31, 2023 & & Soil & L23-Au0012789 & X & & X & & X & X \\
\hline 12 & TP02 0.0 & Jul 31, 2023 & & Soil & L23-Au0012790 & X & & X & & X & X \\
\hline
\end{tabular}
web: www.eurofins.com.au email: EnviroSales@eurofins.com Girraween
NSW 2145 NATA\#\# 1261

Galt Environment P/L 50 Edward Street Osborne Park WA 6017

Order No.: WAG230373
Report \#: 1014072
Phone: 0862720200
Fax:

0862720200

Canberra Unit 1,2 Dacre Stree Mitchell ACT 291

MILLING WAG230373

Eurofins Environment Testing NZ Ltd
NZBN: 9429046024954
 Penrose, 1061 Rolleston, Gate Pa,
 IANZ\# 1327 IANZ\# 1290 IANZ\# 1402
\begin{tabular}{ll} 
Received: & Aug 4, 2023 12:17 PM \\
Due: & Aug 11, 2023 \\
Priority: & 5 Day \\
Contact Name: & - ALL SRA/Results
\end{tabular}

\section*{Due:}

Contact Name:

5 Day
ALL SRA/Results

Project Name:
Project ID:
\(\square\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & (tooz-t96t SV) s!!os u! solseqst &  &  &  &  & & [ \\
\hline & Laborato & ATA \# 2377 & & & X & X & x & & X & & x \\
\hline & bane Labo & - NATA \# 12 & & & & X & X & X & & & \\
\hline & rnal Labor & & & & & & & & & & \\
\hline 13 & TP03 0.0 & Jul 31, 2023 & Soil & L23-Au0012791 & X & & x & & X & & x \\
\hline 14 & TP04 0.0 & Jul 31, 2023 & Soil & L23-Au0012792 & X & & X & & X & & x \\
\hline 15 & TP05 0.0 & Jul 31, 2023 & Soil & L23-Au0012793 & x & & x & & X & & x \\
\hline 16 & TP060.0 & Jul 31, 2023 & Soil & L23-Au0012794 & X & & X & & X & & x \\
\hline 17 & TP07 0.0 & Jul 31, 2023 & Soil & L23-Au0012795 & X & & X & & X & & x \\
\hline & Counts & & & & 7 & 17 & 17 & 10 & 7 & & 7 \\
\hline
\end{tabular}

\section*{ARL}

\section*{Internal Quality Control Review and Glossary General}

QC data may be available on request.
All soil results are reported on a dry basis, unless otherwise stated.
Samples were analysed on an 'as received' basis.
Information identified on this report with the colour blue indicates data provided by customer that may have an impact on the results.
This report replaces any interim results previously issued.

\section*{Holding Times}

Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001).
If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Units} \\
\hline \% w/w: & Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (\% w/w) \\
\hline F/fld & Airborne fibre filter loading as Fibres (N) per Fields counted ( \(\mathbf{n}\) ) \\
\hline F/mL & Airborne fibre reported concentration as Fibres per millilitre of air drawn over the sampler membrane (C) \\
\hline \(\mathrm{g}, \mathrm{kg}\) & Mass, e.g. of whole sample (M) or asbestos-containing find within the sample (m) \\
\hline \(\mathrm{g} / \mathrm{kg}\) & Concentration in grams per kilogram \\
\hline \(\mathrm{L}, \mathrm{mL}\) & Volume, e.g. of air as measured in AFM (V=r \(\times \mathbf{t}\) ) \\
\hline L/min & Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane ( \(\mathbf{r}\) ) \\
\hline min & Time (t), e.g. of air sample collection period \\
\hline \multicolumn{2}{|l|}{Calculations} \\
\hline Airborne Fibre Concentration: & \(C=\left(\frac{A}{a}\right) \times\left(\frac{N}{n}\right) \times\left(\frac{1}{r}\right) \times\left(\frac{1}{t}\right)=K \times\left(\frac{N}{n}\right) \times\left(\frac{1}{v}\right)\) \\
\hline Asbestos Content (as asbestos): & \(\% w / w=\frac{\left(m \times P_{A}\right)}{M}\) \\
\hline Weighted Average (of asbestos): & \(\%_{W A}=\sum \frac{\left(m \times P_{A}\right)_{x}}{x}\) \\
\hline
\end{tabular}

\section*{Terms}
\%asbestos

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the NEPM and WA DOH, ACM corresponds to material larger than \(7 \mathrm{~mm} \times 7 \mathrm{~mm}\)
AF

AFM
Amosite
AS
Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable".
Airborne Fibre Monitoring, e.g. by the MFM.
Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004. Australian Standard.
Asbestos Content (as asbestos) Total \% w/w asbestos content in asbestos-containing finds in a soil sample (\% w/w).

Chrysotile
coc
Crocidolite
Dry
DS
FA

Fibre Count
Fibre ID
Friable
HSG248
HSG264
ISO (also ISO/IEC)
K Factor

LOR
MFM (also NOHSC:3003)

NEPM (also ASC NEPM)
Organic
PCM
PLM
Sampling
SMF
SRA
Trace Analysis
UK HSE HSG
UMF

WA DOH

Weighted Average

Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 4964-2004 Chain of Custody.
Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos. Identified in accordance with AS 4964-2004.
Sample is dried by heating prior to analysis.
Dispersion Staining. Technique required for Unequivocal Identification of asbestos fibres by PLM.
Fibrous Asbestos. Asbestos containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become friable with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA generally corresponds to material larger than \(7 \mathrm{~mm} \times 7 \mathrm{~mm}\), although FA may be more difficult to visibly distinguish and may be assessed as AF.
Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003
Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile, Amosite (Grunerite) or Crocidolite asbestos. Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is outside of the laboratory's remit to assess degree of friability.
UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021)
UK HSE HSG264, Asbestos: The Survey Guide (2012).
International Organization for Standardization / International Electrotechnical Commission.
Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece graticule area of the specific microscope used for the analysis (a).
Limit of Reporting.
Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission, Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)].
National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended).
Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004.
Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.
Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004.
Unless otherwise stated Eurofins are not responsible for sampling equipment or the sampling process.
Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004.
Sample Receipt Advice.
Analytical procedure used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix.
United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication.
Unidentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according the AS \(4964-2004\). May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos.
Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-
Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis
Combined average \(\% \mathrm{w} / \mathrm{w}\) asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (\%wa).

\section*{Comments}

\section*{Sample Integrity}
\begin{tabular}{l|l} 
Custody Seals Intact (if used) & N/A \\
Attempt to Chill was evident & Yes \\
Sample correctly preserved & Yes \\
Appropriate sample containers have been used & Yes \\
Sample containers for volatile analysis received with minimal headspace & N/A \\
Samples received within HoldingTime & Yes \\
Some samples have been subcontracted & No
\end{tabular}

\section*{Asbestos Counter/Identifier:}

Angela Tan
Senior Analyst-Asbestos

\section*{Authorised by:}

Rhys Thomas
Senior Analyst-Asbestos


\section*{Kim Rodgers}

\section*{General Manager}

Final Report - this report replaces any previously issued Report
- Indicates Not Requested
* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request
Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

\section*{Appendix F: Analytical Test Results}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Unit & EQL & NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay & NEPM 2013 Table 1A(1) HILs Res A Soil & & & & & & & \\
\hline \multicolumn{12}{|l|}{BTEX} \\
\hline Naphthalene (VOC) & mg/kg & 0.5 & 5 & & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & <0.5 & <0.5 & <0.5 \\
\hline Benzene & \(\mathrm{mg} / \mathrm{kg}\) & 0.1 & \(0.7|1| 2 \mid 3\) & & <0.1 & \(<0.1\) & <0.1 & \(<0.1\) & <0.1 & <0.1 & <0.1 \\
\hline Toluene & \(\mathrm{mg} / \mathrm{kg}\) & 0.1 & 480 & & <0.1 & <0.1 & <0.1 & <0.1 & <0.1 & <0.1 & <0.1 \\
\hline Ethylbenzene & \(\mathrm{mg} / \mathrm{kg}\) & 0.1 & & & <0.1 & <0.1 & <0.1 & <0.1 & <0.1 & <0.1 & <0.1 \\
\hline Xylene (m \& p) & \(\mathrm{mg} / \mathrm{kg}\) & 0.2 & & & <0.2 & <0.2 & <0.2 & <0.2 & <0.2 & \(<0.2\) & \(<0.2\) \\
\hline Xylene (0) & \(\mathrm{mg} / \mathrm{kg}\) & 0.1 & & & \(<0.1\) & \(<0.1\) & \(<0.1\) & \(<0.1\) & \(<0.1\) & <0.1 & <0.1 \\
\hline Xylene Total & \(\mathrm{mg} / \mathrm{kg}\) & 0.3 & 110 | 310 & & <0.3 & <0.3 & <0.3 & <0.3 & <0.3 & \(<0.3\) & \(<0.3\) \\
\hline \multicolumn{12}{|l|}{TRH} \\
\hline C6-C10 Fraction (F1) & mg/kg & 20 & & & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) \\
\hline C6-C10 (F1 minus BTEX) & \(\mathrm{mg} / \mathrm{kg}\) & 20 & 50 | 90 | 150 | 290 & & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) \\
\hline >C10-C16 Fraction (F2) & \(\mathrm{mg} / \mathrm{kg}\) & 50 & & & <50 & <50 & <50 & <50 & <50 & <50 & <50 \\
\hline >C10-C16 Fraction (F2 minus Naphthalene) & mg/kg & 50 & 280 & & <50 & <50 & <50 & <50 & <50 & <50 & < 50 \\
\hline >C16-C34 Fraction (F3) & \(\mathrm{mg} / \mathrm{kg}\) & 100 & & & <100 & <100 & \(<100\) & \(<100\) & <100 & \(<100\) & \(<100\) \\
\hline >C34-C40 Fraction (F4) & \(\mathrm{mg} / \mathrm{kg}\) & 100 & & & \(<100\) & \(<100\) & \(<100\) & \(<100\) & \(<100\) & \(<100\) & \(<100\) \\
\hline >110-C40 Fraction (Sum) & mg/kg & 100 & & & \(<100\) & \(<100\) & \(<100\) & \(<100\) & \(<100\) & \(<100\) & \(<100\) \\
\hline \multicolumn{12}{|l|}{Inorganics} \\
\hline Moisture Content (dried @ \(103^{\circ} \mathrm{C}\) ) & \% & 1 & & & 6.5 & 8.1 & 6.0 & 9.9 & 4.4 & 7.7 & 14 \\
\hline \multicolumn{12}{|l|}{Metals} \\
\hline Arsenic & \(\mathrm{mg} / \mathrm{kg}\) & 5 & & 100 & <5 & \(<5\) & <5 & \(<5\) & \(<5\) & <5 & <5 \\
\hline Cadmium & mg/kg & 0.1 & & 20 & 0.1 & 0.1 & 0.1 & 0.2 & \(<0.1\) & \(<0.1\) & \(<0.1\) \\
\hline Chromium (III+VI) & \(\mathrm{mg} / \mathrm{kg}\) & 1 & & & 13 & 15 & 13 & 17 & 19 & 35 & 19 \\
\hline Copper & \(\mathrm{mg} / \mathrm{kg}\) & 1 & & 6,000 & 4.9 & 9.2 & 5.3 & 6.5 & 6.2 & 9.4 & 7.3 \\
\hline Lead & \(\mathrm{mg} / \mathrm{kg}\) & 1 & & 300 & 13 & 14 & 11 & 14 & 11 & 17 & 11 \\
\hline Mercury & \(\mathrm{mg} / \mathrm{kg}\) & 0.02 & & 40 & \(<0.02\) & \(<0.02\) & \(<0.02\) & \(<0.02\) & \(<0.02\) & 0.15 & \(<0.02\) \\
\hline Nickel & \(\mathrm{mg} / \mathrm{kg}\) & 1 & & 400 & 3.0 & 4.2 & 3.4 & 5.8 & 3.9 & 11 & 2.8 \\
\hline Zinc & \(\mathrm{mg} / \mathrm{kg}\) & 1 & & 7,400 & 14 & 70 & 10 & 12 & 9.1 & 6.8 & 17 \\
\hline \multicolumn{12}{|l|}{PAH} \\
\hline Acenaphthene & mg/kg & 0.5 & & & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) \\
\hline Acenaphthylene & \(\mathrm{mg} / \mathrm{kg}\) & 0.5 & & & <0.5 & <0.5 & \(<0.5\) & <0.5 & <0.5 & <0.5 & <0.5 \\
\hline Anthracene & \(\mathrm{mg} / \mathrm{kg}\) & 0.5 & & & <0.5 & <0.5 & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) \\
\hline Benzo(a)anthracene & \(\mathrm{mg} / \mathrm{kg}\) & 0.5 & & & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) \\
\hline Benzo(a) pyrene & \(\mathrm{mg} / \mathrm{kg}\) & 0.5 & & & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) \\
\hline Benzo(b+j)fluoranthene & \(\mathrm{mg} / \mathrm{kg}\) & 0.5 & & & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) \\
\hline Benzo(g, h, i) perylene & \(\mathrm{mg} / \mathrm{kg}\) & 0.5 & & & <0.5 & \(<0.5\) & \(<0.5\) & <0.5 & <0.5 & <0.5 & \(<0.5\) \\
\hline Benzo(k)fluoranthene & \(\mathrm{mg} / \mathrm{kg}\) & 0.5 & & & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) \\
\hline Chrysene & \(\mathrm{mg} / \mathrm{kg}\) & 0.5 & & & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) \\
\hline Dibenz(a,h)anthracene & \(\mathrm{mg} / \mathrm{kg}\) & 0.5 & & & <0.5 & \(<0.5\) & <0.5 & <0.5 & <0.5 & \(<0.5\) & <0.5 \\
\hline Fluoranthene & \(\mathrm{mg} / \mathrm{kg}\) & 0.5 & & & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & <0.5 & \(<0.5\) & \(<0.5\) \\
\hline Fluorene & \(\mathrm{mg} / \mathrm{kg}\) & 0.5 & & & <0.5 & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & <0.5 & <0.5 \\
\hline Indeno(1,2,3-c,d)pyrene & \(\mathrm{mg} / \mathrm{kg}\) & 0.5 & & & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & <0.5 & \(<0.5\) & \(<0.5\) \\
\hline Naphthalene & mg/kg & 0.5 & 5 & & <0.5 & \(<0.5\) & <0.5 & <0.5 & <0.5 & <0.5 & <0.5 \\
\hline Phenanthrene & \(\mathrm{mg} / \mathrm{kg}\) & 0.5 & & & <0.5 & <0.5 & \(<0.5\) & <0.5 & \(<0.5\) & \(<0.5\) & <0.5 \\
\hline Pyrene & \(\mathrm{mg} / \mathrm{kg}\) & 0.5 & & & <0.5 & \(<0.5\) & \(<0.5\) & \(<0.5\) & <0.5 & <0.5 & <0.5 \\
\hline PAHs (Sum of total) & mg/kg & 0.5 & & 300 & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) \\
\hline \multicolumn{12}{|l|}{TPH} \\
\hline C6-C9 Fraction & mg/kg & 20 & & & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) \\
\hline C10-c14 Fraction & \(\mathrm{mg} / \mathrm{kg}\) & 20 & & & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) \\
\hline C15-C28 Fraction & mg/kg & 50 & & & <50 & <50 & <50 & <50 & <50 & <50 & <50 \\
\hline C29-C36 Fraction & \(\mathrm{mg} / \mathrm{kg}\) & 50 & & & <50 & \(<50\) & <50 & \(<50\) & <50 & <50 & <50 \\
\hline C10-C36 Fraction (Sum) & \(\mathrm{mg} / \mathrm{kg}\) & 50 & & & <50 & <50 & <50 & \(<50\) & \(<50\) & \(<50\) & <50 \\
\hline
\end{tabular}

\section*{Appendix G: Understanding Your Report}

\section*{UNDERSTANDING YOUR REPORT}

GALT FORM PMP11 Rev4

\section*{1. EXPECTATIONS OF THE REPORT}

This document has been prepared to clarify what is and is not provided in your report. It is intended to inform you of what your realistic expectations of this report should be and how to manage your risks associated with the conditions on site.

Geotechnical engineering and environmental science are less exact than other engineering and scientific disciplines. We include this information to help you understand where our responsibilities begin and end. You should read and understand this information. Please contact us if you do not understand the report or this explanation. We have extensive experience in a wide variety of projects and we can help you to manage your risk.

\section*{2. THIS REPORT RELATES TO PROJECT-SPECIFIC CONDITIONS}

This report was developed for a unique set of project-specific conditions to meet the needs of the nominated client. It took into account the following:
( the project objectives as we understood them and as described in this report;
* the specific site mentioned in this report; and
* the current and proposed development at the site.

It should not be used for any purpose other than that indicated in the report. You should not rely on this report if any of the following conditions apply:
( the report was not written for you;
* the report was not written for the site specific to your development;
the report was not written for your project (including a development at the correct site but other than that listed in the report); or
\& the report was written before significant changes occurred at the site (such as a development or a change in ground conditions).

You should always inform us of changes in the proposed project (including minor changes) and request an assessment of their impact.

Where we are not informed of developments relevant to your report, we cannot be held responsible or liable for problems that may arise as a consequence.

Where design is to be carried out by others using information provided by us, we recommend that we be involved in the design process by being engaged for consultation with other members of the project team. Furthermore, we recommend that we be able to review work produced by other members of the project team that relies on information provided in our report.

\section*{3. DATA PROVIDED BY THIRD PARTIES}

Where data is provided by third parties, it will be identified as such in our reports. We necessarily rely on the completeness and accuracy of data provided by third parties in order to draw conclusions presented in our reports. We are not responsible for omissions, incomplete or inaccurate data associated with third party data, including where we have been requested to provide advice in relation to field investigation data provided by third parties.

\section*{4. SOIL LOGS}

Our reports often include logs of intrusive and non-intrusive investigation techniques prepared by Galt. These logs are based on our interpretation of field data and laboratory results. The logs should only be read in conjunction with the report they were issued with and should not be re-drawn for inclusion in other documents not prepared by us.

\section*{5. THIRD PARTY RELIANCE}

We have prepared this report for use by the client. This report must be regarded as confidential to the client and the client's professional advisors. We do not accept any responsibility for contents of this document from any party other than the nominated client. We take no responsibility for any damages suffered by a third party because of any decisions or actions they may make based on this report. Any reliance or decisions made by a third party based on this report are the responsibility of the third party and not of us.

\section*{6. CHANGE IN SUBSURFACE CONDITIONS}

The recommendations in this report are based on the ground conditions that existed at the time when the study was undertaken. Changes in ground conditions can occur in numerous ways including anthropogenic events (such as construction or contaminating activities on or adjacent to the site) or natural events (such as floods, groundwater fluctuations or earthquakes). We should be consulted prior to use of this report so that we can comment on its reliability. It is important to note that where ground conditions have changed, additional sampling, testing or analysis may be required to fully assess the changed conditions.

\section*{7. SUBSURFACE CONDITIONS DURING CONSTRUCTION}

Practical constraints mean that we cannot know every minute detail about the subsurface conditions at a particular site. We use professional judgement to form an opinion about the subsurface conditions at the site. Some variation to our evaluated conditions is likely and significant variation is possible. Accordingly, our report should not be considered as final as it is developed from professional judgement and opinion.

The most effective means of dealing with unanticipated ground conditions is to engage us for construction support. We can only finalise our recommendations by observing actual subsurface conditions encountered during construction. We cannot accept liability for a report's recommendations if we cannot observe construction.

\section*{8. ENVIRONMENTAL AND GEOTECHNICAL ISSUES}

Unless specifically mentioned otherwise in our report, environmental considerations are not addressed in geotechnical reports. Similarly, geotechnical issues are not addressed in environmental reports. The investigation techniques used for geotechnical investigations can differ from those used for environmental investigations. It is the client's responsibility to satisfy themselves that geotechnical and environmental considerations have been taken into account for the site.

Geotechnical advice presented in a Galt Environmental report has been provided by Galt Geotechnics under a sub-contract agreement. Similarly, environmental advice presented in a Galt Geotechnics report has been provided by Galt Environmental under a sub-contract agreement.

Unless specifically noted otherwise, no parties shall draw any inferences about the applicability of the Western Australian state government landfill levy from the contents of this document.

O:\Administration\Standard Forms and Documents\PMP11-Rev3 Understanding your Report.docx

\section*{Report on}

\title{
SITE AND SOIL EVALUATION PROPOSED ACCOMMODATION SITE PART LOT 80, GREAT NORTHERN HIGHWAY MILING
}

\section*{Submitted to:}

Cooperative Bulk Handling (CBH) Ltd Level 6, 240 St Georges Terrace PERTH WA 6000

\section*{TABLE OF CONTENTS}
1. Introduction .....  1
2. Definitions ..... 1
3. Governing Standards, Regulations and Policies ..... 1
4. Project Objectives ..... 2
5. Site Description and Proposed Development ..... 2
5.1 General ..... 2
5.2 Hydraulic Loading of Proposed Development .....  .3
6. Fieldwork ..... 3
7. Laboratory Testing ..... 5
7.1 Geotechnical .....  5
7.2 Chemical .....  5
8. Site Assessment .....  .6
8.1 Geology and Surface Geology .....  .6
8.2 Groundwater ..... 6
8.3 Climate .....  .6
8.3.1 Rainfall .....  .6
8.3.2 Evaporation ..... 6
8.3.3 Water Balance .....  7
8.4 Exposure. .....  .7
8.5 Vegetation ..... 7
8.6 Landform and Drainage ..... 7
8.7 Slope .....  .7
8.8 Fill (Imported). ..... 7
8.9 Surface Gravel and Rock Outcrops .....  7
8.10 Erosion Potential .....  7
8.11 PDWSAs and SSAs .....  .7
8.12 Groundwater Separation .....  8
8.13 Surface Waters and Separation from Water Resources .....  8
8.14 Rainfall Run-on and Seepage ..... 8
8.15 Flood Potential .....  8
8.16 Setbacks .....  .8
8.17 Land Application Area (LAA) .....  .9
8.17.1 Government Sewerage Policy .....  9
8.17.2 Summary .....  9
9. Soil Assessment ..... 10
9.1 Subsurface Conditions. ..... 10
9.2 Soil Category ..... 10
9.3 Design Loading Rates ..... 10
9.4 Soil Chemistry. ..... 11
10. Site and Soil Assessment results ..... 11
11. Site Suitability and Recommendations ..... 12
12. Closure ..... 13
TABLES
Table 1: Summary of Tests ..... 4
Table 2: Constant Head Permeability Test Results .....  .5
Table 3: Summary of Laboratory Test Results. .....  5
Table 4: Summary of Chemical Laboratory Test Results ..... 6
Table 5: Bureau of Meteorology Weather Station Details .....  .6
Table 6: Weather Station (8085) Monthly Rainfall Data for All Years (1925-2023) .....  6
Table 7: Evaporation Data Estimates - Monthly .....  6
Table 8: Required Horizontal Setback Distances (AS1547) .....  9
Table 9: Conversion Factors used to calculate minimum required LAA (GSP 2019) .....  9
Table 10: Summary of the available and minimum LAA .....  .10
Table 11: Design Loading/Irrigation Rates (mm/day) ..... 10
Table 12: Soil Chemistry Summary ..... 11

\section*{FIGURES}

FIGURE 1: SITE AND LOCATION PLAN
```

APPENDICES
APPENDIX A: SITE PHOTOGRAPHS
APPENDIX B: TEST PIT REPORTS
APPENDIX C: CONSTANT HEAD PERMEAMETER TEST RESULTS
APPENDIX D: LABORATORY TEST RESULTS - GEOTECHNICAL
APPENDIX E: LABORATORY TEST RESULTS - CHEMICAL
APPENDIX F: WATER BALANCE CALCULATION
APPENDIX G: UNDERSTANDING YOUR REPORT

```

\section*{1. INTRODUCTION}

This report presents the outcomes of Galt Geotechnics' (Galt's) general site and soil evaluation (SSE) for the proposed accommodation site on Part of Lot 80 (\#18201) Great Northern Highway in Miling ("the site").

The location of the site relative to the surrounding area is shown on Figure 1.

\section*{2. DEFINITIONS}

Site and Soil Evaluation (SSE) - an assessment of all relevant constraints and the risks to public health and the environment in accordance with AS1547-2012 "On-site domestic wastewater management". This SSE is a general assessment SSE, with the purpose being to undertake a site suitability assessment for onsite wastewater management and to recommend the type of onsite wastewater system for the proposed development. A specific assessment is required to support an "application to install" an onsite wastewater system. This is for when a particular type of system/model is proposed, and a detailed design, including management recommendations and operation requirements. This document is not a specific assessment.

Land Application Area (LAA) - The unencumbered plan area to which treated sewage from an on-site sewage system is distributed for further in-soil treatment and absorption or evaporation. This area is restricted to the distribution of treated sewage and may not be developed for other purposes.

Land Application System (LAS) - The system used to apply effluent from a wastewater treatment unit into or onto the soil for further in-soil treatment and absorption or evaporation.

Effluent - The liquid discharged from a wastewater treatment unit.
Primary Treatment - The separation of suspended material from sewage in septic tanks, primary settling chambers or other structures before discharge to either an LAS or secondary treatment process.

Secondary Treatment - Microbiological digestions and physical settling and filtering processes and decomposition of sewage constituents following primary treatment.

Sewage - Any kind of sewage, faecal matter or urine, and any waste composed wholly or in part of liquid.
Infiltrative Area - Is the area within an LAA that has treated effluent directly discharged onto and does not include setback areas. I.e., the base of leach drains, evapotranspiration beds etc.

\section*{3. GOVERNING STANDARDS, REGULATIONS AND POLICIES}

SSEs are governed by various National and State Standards, Regulations and Policies, including:
- AS/NZS 1547:2012, On-site domestic wastewater management.
- Western Australia Government Sewerage Policy (2019)
- Western Australia Health (Treatment of Sewage and Disposal of Effluent and Liquid Waste) Regulations (1974)
- Western Australia State Planning Policy 2.9, Water Resources (2005)

Other regulatory requirements may become relevant depending on the outcomes of any SSE.

\section*{4. PROJECT OBJECTIVES}

The objective of the study was to undertake an SSE and:
- provide a general site and soil evaluation in accordance with:
o AS1547-2012, On-site domestic wastewater management.
o The Western Australia Government Sewerage Policy (2019).
- Assess the capacity of the site to sustainably manage sewage within lot boundaries;
- Identify public and environmental health risks of on-site sewage management, especially the effect on groundwater and surface water on site; and
- Identify the most appropriate on-site system in consideration of site conditions and the nature of the proposed development.

The Department of Health guidelines "Guidance on Site-and-soil evaluation for on-site sewage management" \({ }^{1}\) notes:
The overall objectives of the SSE process are to:
- assess the capacity of the site to sustainably manage sewage within lot boundaries;
- identify public and environmental health risks of on-site sewage management, especially the effect on groundwater and surface water on the site;
- identify the most appropriate on-site system in consideration of site conditions and the nature of the proposed development; and
- identify and implement a management program to minimise these risks if required.

This report addresses the first 3 items. The last item should be addressed by individual lot owners depending on their specific requirements, sewage loading, etc.

\section*{5. SITE DESCRIPTION AND PROPOSED DEVELOPMENT}

\subsection*{5.1 General}

Lot 80 is roughly rectangular in shape and covers a plan area of about 1.4 hectares. At the time of investigation, a former church (Holy Rosary Catholic Church) occupied the northeast part of site with relatively open cultivated land across the balance of the Lot. Based on publicly available information, the current ground level is around RL 256 m AHD.

The proposed accommodation site is located on the southern part of Lot 80 as shown below.

\footnotetext{
\({ }^{1}\) (https://ww2.health.wa.gov.au/~/media/Files/Corporate/general\%20documents/water/Wastewater/Site-Soil-Evaluation.pdf)
}


Inline Image 1: Proposed Accommodation Site
We understand the site is to be developed with proposed accommodation units, a car park, a drainage basin. We also note that on-site effluent disposal is proposed by way of leach drains.

\subsection*{5.2 Hydraulic Loading of Proposed Development}

An estimated design hydraulic loading has been determined in accordance with the WA Department of Health Regulations 28, 29 and Schedule 9 of the Health Regulations (1974). Based on Table 2 of the schedule, for human waste, a design loading rate of \(180 \mathrm{~L} /\) person/day is considered appropriate (equivalent minesite accommodation camp unit). We have assumed a maximum of around 12 simultaneous persons (based on the number of units shown on the supplied plans), which equates to a design hydraulic loading of \(2,160 \mathrm{~L} /\) day .

\section*{6. FIELDWORK}

Fieldwork was carried out on 31 July and 1 August 2023 and comprised:
- a site walkover including inspection of the site features relevant to AS1547-2012;
- excavation of test pits (TP) at 9 locations (TP01 to TP09), extending to:

0 a target depth of 1.5 m across the proposed carpark and access road (TP01 to TP03);
O refusal, at depths ranging from 1.75 m to 2.5 m across the proposed accommodation units (TP04 to TP06);
0 a depth of 1.5 m at the proposed basin (TPO7); and
0 depths of 1.75 and 1.5 m respectively at the proposed leach drains (TP08 and TP09).
- constant head permeability testing at 3 locations using a Guelph permeameter at:

0 a depth of 0.63 m at the proposed basin location (PO3);
O depths of 0.53 m and 0.50 m respectively, at the proposed leach drains (PO1 and P02)

\section*{General}

Fieldwork was conducted by a geotechnical engineer from Galt in general accordance with AS1726 (2017) "Geotechnical Site Investigations".

Our engineer positioned the tests using a handheld GPS accurate to about 5 m in the horizontal plane. The engineer conducted the walkover survey, observed the test pitting, logged the materials encountered, performed the field tests and collected representative soil samples for laboratory testing.

The approximate test locations are shown on Figure 1. Photographs of the site taken during the inspection are presented in Appendix A, Site Photographs. Details of the test pits are shown in Table 1: Summary of Tests.

Table 1: Summary of Tests
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Test \\
Name
\end{tabular} & \begin{tabular}{c} 
Description of Proposed \\
Development
\end{tabular} & \begin{tabular}{c} 
Test \\
Depth \\
(m)
\end{tabular} & \begin{tabular}{c} 
Reason for \\
Termination
\end{tabular} & \\
\cline { 1 - 1 } TP01 & & & Stratigraphy
\end{tabular}

\section*{Test Pits}

Test pits were excavated using an 8-tonne JCB 3CX tractor-mounted backhoe equipped with a 0.45 m wide toothed bucket. The backhoe was supplied and operated by ANH Contracting. Test pit reports, including a list of notes and abbreviations and the method of soil description used on the reports are included in Appendix B, Test Pit Reports. A photograph of the spoil recovered from each test pit is also included on each report.

\section*{Constant Head Permeability Tests}

Constant head permeability tests were conducted using a Guelph Permeameter at locations where drainage basins / leach drains are likely to be situated. The testing was generally conducted in accordance with Appendix G of AS1547 (2012) "On-site domestic wastewater management". The results of the testing are presented in Appendix C: Constant Head Permeameter Test Results and summarised below.

Table 2: Constant Head Permeameter Test Results
\begin{tabular}{|c|c|c|c|c|}
\hline Test Location & \begin{tabular}{c} 
Depth of \\
Test \((\mathbf{m})\)
\end{tabular} & \begin{tabular}{c} 
Soil Profile (AS1726- \\
\(\mathbf{2 0 1 7})\)
\end{tabular} & \(\mathbf{k}^{\mathbf{1}} \mathbf{( m / d a y )}\) & Soil Category \(^{\mathbf{2}}\)
\end{tabular}

Notes: 1. k - saturated hydraulic conductivity
2. Soil category is as per Table L1 of AS1547-2012.

\section*{7. LABORATORY TESTING}

\subsection*{7.1 Geotechnical}

Geotechnical laboratory testing was conducted by Western Geotechnical and Laboratory Services (WGLS) in their NATA accredited laboratory. The testing comprised determination of:
- particle size distribution on 5 samples;
- Atterberg limits and linear shrinkage on 5 samples and
- Emerson Class tests on 2 samples.

The results of the testing are presented in Appendix D: Laboratory Test Results - Geotechnical and a summary of the test results is presented in Table 3.

Table 3: Summary of Laboratory Test Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Test \\
Location
\end{tabular} & \begin{tabular}{c} 
Sample Depth \\
(m)
\end{tabular} & \begin{tabular}{c} 
AS1726 (2017) \\
Soil Class
\end{tabular} & \begin{tabular}{c} 
\% \\
Gravel
\end{tabular} & \begin{tabular}{c} 
\% \\
Sand
\end{tabular} & \begin{tabular}{c} 
\% \\
Fines
\end{tabular} & \begin{tabular}{c} 
LL \\
(\%)
\end{tabular} & \begin{tabular}{c} 
PI \\
(\%)
\end{tabular} & \begin{tabular}{c} 
LS \\
\(\mathbf{( \% )}\)
\end{tabular} & \begin{tabular}{c} 
Emerson \\
Class
\end{tabular} \\
\hline TP03 & \(0.4-0.7\) & Sandy CLAY (CI-CH) & 16 & 44 & 40 & 50 & 32 & 13.5 & \\
\hline TP05 & \(1.0-1.3\) & Sandy CLAY (CI) & 10 & 50 & 40 & 44 & 28 & 11.0 & \\
\hline TP06 & \(2.2-2.5\) & Sandy CLAY (CI) & 6 & 39 & 55 & 47 & 29 & 11.5 & \\
\hline TP08 & \(0.45-0.65\) & \begin{tabular}{c} 
Sandy Gravelly CLAY \\
(CH)
\end{tabular} & 34 & 29 & 37 & 54 & 36 & 15.0 & 2 \\
\hline TP09 & \(0.5-0.7\) & Sandy CLAY (CI) & 2 & 50 & 48 & 45 & 28 & 10.5 & 2 \\
\hline
\end{tabular} \begin{tabular}{l} 
LL -Liquid Limit \\
Grey Shaded - Not Tested
\end{tabular}

\subsection*{7.2 Chemical}

Chemical laboratory testing was undertaken by Envirolab Services (WA) in their NATA accredited laboratory. The testing comprised determination of:
- phosphorus retention index (PRI) testing on 2 samples;
- pH on 2 samples; and
- electrical conductivity on 2 samples.

The results of the testing are presented in Laboratory Test Results - Chemical Appendix E: Laboratory Test Results Chemical and a summary of the test results is presented in Table 4.

Table 4: Summary of Chemical Laboratory Test Results
\begin{tabular}{|c|c|c|c|c|}
\hline Test Location & \begin{tabular}{c} 
Depth \\
\((\mathbf{m})\)
\end{tabular} & \begin{tabular}{c} 
Phosphorous \\
Retention Index \\
(PRI)
\end{tabular} & \(\mathbf{p H}\) & \begin{tabular}{c} 
Electrical Conductivity \\
\((\boldsymbol{\mu S} / \mathbf{c m})\)
\end{tabular} \\
\hline TP08 & \(0.45-0.65\) & 19 & 9.6 & 460 \\
\hline TP09 & \(0.5-0.7\) & 11 & 9.7 & 580 \\
\hline
\end{tabular}

\section*{8. SITE ASSESSMENT}

\subsection*{8.1 Geology and Surface Geology}

The Moora sheet of the \(1: 250,000\) scale Geological series map indicates that the area is underlain by Colluvium which is broadly described as rock fragments (presumably gravelly soil). Colluvial sand is also shown close to the site.

Our investigation found the subsurface conditions comprise clayey soils (clayey sand and sandy clay) overlying possible cemented soils/rock at depth.

\subsection*{8.2 Groundwater}

We did not encounter groundwater during our investigation (maximum 2.5 m depth). However, we expect that stormwater runoff perches on the low permeability clayey soils particularly following periods of significant rainfall particularly during winter.

\subsection*{8.3 Climate \\ 8.3.1 Rainfall}

The nearest Bureau of Meteorology (BoM) weather station to the site is presented below.
Table 5: Bureau of Meteorology Weather Station Details
\begin{tabular}{|c|c|c|c|c|}
\hline Location & BoM Station Number & Latitude & Longitude & Elevation \\
\hline Miling & 8085 & \(30.49^{\circ}\) & \(116.36^{\circ}\) & 250 m \\
\hline
\end{tabular}

Monthly rainfall data was sourced for this station on 8 June 2023 and is presented in Table 6.
Table 6: Weather Station (8085) Monthly Rainfall Data for All Years (1925-2023)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Statistic & Jan & Feb & Mar & Apr & May & Jun & Jul & Aug & Sep & Oct & Nov & Dec & Annual \\
\hline Mean & 15.2 & 16.4 & 19.1 & 21.4 & 47.4 & 62.8 & 63.0 & 49.4 & 26.6 & 18.1 & 9.8 & 9.8 & 366.6 \\
\hline
\end{tabular}

\subsection*{8.3.2 Evaporation}

Evaporation data is estimated from The Department of Agriculture and Food (1987) \({ }^{2}\) data. The nearest referenced location in the document is Berkshire Valley.

Table 7: Evaporation Data Estimates - Monthly
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Statistic & Jan & Feb & Mar & Apr & May & Jun & Jul & Aug & Sep & Oct & Nov & Dec & Annual \\
\hline Mean & 381 & 343 & 304 & 183 & 117 & 74 & 73 & 96 & 127 & 200 & 276 & 373 & 2547 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{2}\) Luke, G J, Burke, K L, and O’Brien T M. (1987), Evaporation data for Western Australia. Department of Agriculture and Food, Western Australia, Perth. Report 65.
}

The evaporation generally exceeds the rainfall annually at the site. On average, there are no months of the year where the rainfall exceeds the evaporation at the site.

\subsection*{8.3.3 Water Balance}

A water balance calculation is presented in Appendix F.
The results indicate that a minimum land application area of \(276 \mathrm{~m}^{2}\) is required for zero storage of wastewater (when disposed via beds and trenches).

\subsection*{8.4 Exposure}

The proposed LAA area is clear of tree cover and generally well exposed to sunlight.
At the time of investigation, a row of five medium-sized trees were present near the southern part of site (near proposed accommodation units). We expect these trees to be cleared during the proposed development.

As the site is gently sloping, it has no significant aspect.

\subsection*{8.5 Vegetation}

No significant or native vegetation is present on the proposed LAA. Most of the proposed LAA is currently open paddock with grass present at surface.

We anticipate that this light vegetation will be removed as part of the development.

\subsection*{8.6 Landform and Drainage}

The site is in a flat area with no significant slopes or otherwise. Some low-lying overland flow paths appear to exist between 0.5 km and 1 km from the site, with presumably a very gentle grade from the site to these flow paths.

\subsection*{8.7 Slope}

The site has no significant slope.

\subsection*{8.8 Fill (Imported)}

No fill is proposed, and no imported fill was noted during our investigation.

\subsection*{8.9 Surface Gravel and Rock Outcrops}

No natural rock or gravel outcrops were noted.

\subsection*{8.10 Erosion Potential}

The site is flat with no significant slope. Overland flow is minimal, so erosion is considered unlikely.

\subsection*{8.11 PDWSAs and SSAs}

The site is not mapped as being in a PDWSA.

The Department of Planning, Lands and Heritage (DPLH) maps the site as not being a sewage sensitive area (SSA).

\subsection*{8.12 Groundwater Separation}

Groundwater was not encountered during our field investigation in winter 2023, to the maximum investigated depth of 2.5 m . However, water is likely to pond on the surface of clayey soils (i.e., the site surface) following rainfall events.

The site must be graded to drain away from the LAA and to prevent ponding of any stormwater. We also recommend inverting of leach drains.

\subsection*{8.13 Surface Waters and Separation from Water Resources}

There are no existing surface waters within 100 m of the site.

A stormwater detention basin is proposed north of the proposed leach drain area. This will require a setback of 6 m (refer Section 8.16). A setback of \(\sim 6 \mathrm{~m}\) is currently shown on the information that has been supplied to us.

The LAA will have sufficient separation from water resources.

\subsection*{8.14 Rainfall Run-on and Seepage}

The natural clayey soils have a low permeability. Stormwater will follow the natural grade of the site.

The site must be graded to prevent stormwater run-on to the LAA. This can be achieved in the civil design by grading the site away from the LAA and using interception bunds as required.

\subsection*{8.15 Flood Potential}

The site is not mapped as being within a flood risk area by the Department of Water (DoW).

\subsection*{8.16 Setbacks}

The following horizontal setbacks are applicable.
geotechnic
Table 8: Required Horizontal Setback Distances (AS1547)
\begin{tabular}{|c|c|c|}
\hline Feature & Sub-Type & \begin{tabular}{c} 
Horizontal Setback \\
Distance (m)
\end{tabular} \\
\hline \begin{tabular}{c} 
Treatment tanks to buildings, property boundaries, driveways, \\
paths and other tanks
\end{tabular} & - & 1.2 \\
\hline \begin{tabular}{c} 
Trenches, beds and soak wells to boundary, building, tanks and \\
other land application systems
\end{tabular} & - & 1.8 \\
\hline Trenches, beds and soak wells to trafficable areas & - & 1.2 \\
\hline \begin{tabular}{c} 
Any land application system to wells, streams, private bores or \\
underground source of water intended for human consumption
\end{tabular} & - & 30 \\
\hline Trenches, beds and soak wells to subsoil drains or open drainage \\
channels
\end{tabular}\(\quad\)\begin{tabular}{c} 
(
\end{tabular}

All setbacks can be met on the site.

\subsection*{8.17 Land Application Area (LAA)}
8.17.1 Government Sewerage Policy

The required minimum Land Application Area (LAA) has been determined in accordance with Schedule 2 of the GSP (2019) using the conversion factors as follows:

Table 9: Conversion Factors used to calculate minimum required LAA (GSP 2019)
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ Soil Category } & Soil Texture & \multicolumn{2}{|c|}{ Conversion Factors } \\
\cline { 3 - 4 } & & Primary Treatment & Secondary Treatment \\
\hline 5 & Light clays & 1.284 & 0.333 \\
\hline
\end{tabular}

Based on the soil results and other site constraints (very low permeability soils etc.) we recommend secondary treatment (i.e., via ATUs) to minimise the LAA and to control on site risk.

For the estimated hydraulic load of 2,160 L/day, the calculated minimum land application area is \(720 \mathrm{~m}^{2}\) for secondary treatment. Secondary treatment is required on this site due to Category 5 soils being present.

\subsection*{8.17.2 Summary}

The below presents a summary of the available and required LAA:

Table 10: Summary of the available and minimum LAA
\begin{tabular}{|c|l|c|}
\hline Item & Section of SSE & Land Application Area (m \({ }^{\mathbf{2}}\) ) \\
\hline GSP (2019) Minimum & Section 8.17.1 & 720 \\
\hline Area required to meet water balance & Section 8.3.3 & 276 \\
\hline \multicolumn{2}{|c|}{ MINIMUM REQUIRED LAA } & 720 \\
\hline \multicolumn{2}{|c|}{ LAA AS SHOWN ON PLAN } & Not defined \\
\hline
\end{tabular}

Note: The LAA shown above is based on upon hydraulic loading assumptions made in Section 5.2.

\section*{9. SOIL ASSESSMENT}

\subsection*{9.1 Subsurface Conditions}

The typical soil profiles can be described as follows:

\section*{TP01 and TP02}
- FILL: Clayey SAND (SC): fine to coarse grained, brown, approximately 12-20\% low plasticity fines, trace organic fines, trace rootlets, trace gravel of building rubble, dry, typically 200 mm thick; overlying
- Sandy CLAY (CI): medium plasticity, brown becoming pale brown mottled white with depth, with fine to coarse grained sand, with fine to coarse grained gravel, dry, extending to a depth of 1.5 m .

\section*{TP03 to TP09 (Including LAA)}
- TOPSOIL: Clayey SAND (SC)/Sandy CLAY (CI-CH): fine to coarse grained, brown, with low to medium plasticity fines, trace fine grained gravel, trace organic fines, trace rootlets, typically dry, extending to depths ranging from 0.1 m to 0.2 m ; overlying
- Sandy CLAY (CI / CI-CH): medium and high plasticity, brown becoming brown mottled red with depth, with about 40-50\% fine to coarse grained sand, trace to with fine to medium grained gravel, dry, extending to the typical investigated depth of 2.5 m .

Notes: 1. A layer of high plasticity Sandy Gravelly CLAY (CH) was noted at location TP08 (approximately 200 mm thick).
Test locations TP05-TP07 presented a thin layer (around 100-200 mm thick) of Clayey SAND (SC) underlying the Topsoil layer.

\subsection*{9.2 Soil Category}

We have assessed the soil types based on our visual-tactile assessment, laboratory and infiltration testing, in accordance with Table L1 of AS1547. A soil type of Category 5 with a saturated hydraulic conductivity of \(<0.06 \mathrm{~m} /\) day is considered applicable.

\subsection*{9.3 Design Loading Rates}

Based on Table L1 of AS1547-2012, the following design loading rates (DLRs) are considered applicable.
Table 11: Design Loading/Irrigation Rates (mm/day)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\(\begin{array}{c}\text { Soil } \\
\text { Category }\end{array}\)} & \(\begin{array}{c}\text { Indicative } \\
\text { permeability } \\
\left(\mathbf{k}_{\text {sat }}\right)(\mathrm{m} / \mathrm{d})\end{array}\) & \(\begin{array}{c}\text { Primary Treated } \\
\text { Effluent } \\
\text { (Conservative Rate) }\end{array}\) & \(\begin{array}{c}\text { Primary Treated } \\
\text { Effluent } \\
\text { (Maximum Rate) }\end{array}\) & \(\begin{array}{c}\text { Secondary Treated } \\
\text { Effluent }\end{array}\) \\
\cline { 3 - 5 } & (ATUs/WWTUs)
\end{tabular}\(]\)

Secondary treatment of effluent must be done on this site.

\subsection*{9.4 Soil Chemistry}

The results of the soil chemistry testing and the values associated with level of constraint (as outlined in AS1547-2012) are presented in Table 12.

Table 12: Soil Chemistry Summary
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ Chemical Feature } & \multirow{2}{*}{ Test Result } & \multicolumn{3}{|c|}{ Level of Constraint/Risk (AS1547) } \\
\cline { 3 - 5 } & & Low & Medium & High \\
\hline pH & \(9.6-9.7\) & \(6-8\) & \(4.5-6\) & \(<4.5,>8\) \\
\hline Electrical Conductivity \((\mathrm{dS} / \mathrm{m})\) & \(0.46-0.58\) & \(<0.3\) & \(0.3-2\) & \(>2\) \\
\hline Phosphorus retention index (PRI) \({ }^{1}\) & \(11-19\) & \(>20\) & \(5-20\) & \(<5\) \\
\hline
\end{tabular}

Notes: 1. Phosphorus retention index requirements are based on our interpretation of The Department of Primary Industries and Regional Development Standards for Land Resource Mapping (2005), as this is not specified in AS1547.

The results indicate a medium to high risk on the basis of pH , and phosphorus retention. Elevated pH and electrical conductivities are seen to increase the risk of a soil being erodible or dispersive. This is supported by the Emerson class testing which indicated an emerson class test of 2 (somewhat dispersive).

We consider that this risk is mitigated where the LAA:
- is relatively flat;
- has no embankments/batters etc; and
- is bunded or otherwise designed to prevent rainfall run-on and run-off.

We do not consider that any modification to the site soils will be required to mitigate the risks presented by the soil chemistry.

\section*{10. SITE AND SOIL ASSESSMENT RESULTS}

A risk-based assessment has been carried out in accordance with AS1547-2012 and is presented below. This assessment is based on the information presented in Sections 8 and 9.

Table 13: Site and Soil Risk Based Assessment (AS1547)
\begin{tabular}{|c|c|l|}
\hline Characteristic & Level of Constraint & \multicolumn{1}{|c|}{ Mitigation Measures } \\
\hline Climate & High & \begin{tabular}{l} 
System must be designed to consider water balance. \\
Refer to Section 8.3.3.
\end{tabular} \\
\hline Exposure & Low & - \\
\hline Vegetation & Low & \begin{tabular}{l} 
Encourage other plant growth to promote nutrient \\
uptake.
\end{tabular} \\
\hline Landform \& Drainage & Low & -- \\
\hline Slope & Low & Site is flat. \\
\hline Fill (Imported) & Low & - \\
\hline \begin{tabular}{c} 
Surface Gravel and Rock \\
Outcrops
\end{tabular} & Low & - \\
\hline Erosion Potential & Low & - \\
\hline \begin{tabular}{c} 
Separation from \\
Groundwater
\end{tabular} & Nil & \begin{tabular}{l} 
No groundwater encountered. Surface water \\
(stormwater) must be diverted away from LAA.
\end{tabular} \\
\hline PDWSAs and SSAs & Low & \begin{tabular}{l} 
Site must grade to drainage areas away from LAA. LAA \\
must be 6 m from proposed drainage basin.
\end{tabular} \\
\hline Surface Water & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline Characteristic & Level of Constraint & \multicolumn{1}{|c|}{ Mitigation Measures } \\
\hline Rainfall Run-on & Low to Moderate & Need for diversion of stormwater from LAA \\
\hline Flood Potential & Low & \begin{tabular}{l} 
The site is not identified as being within a recognised \\
floodplain
\end{tabular} \\
\hline Setbacks & Low & Refer Section 8.16 \\
\hline Available LAA & Low & Site is large rural area \\
\hline Sufficient Profile Depth & Low & - \\
\hline Depth to water table & Low & \begin{tabular}{l} 
Groundwater not encountered within 2.5 at end of \\
winter 2023.
\end{tabular} \\
\hline Coarse Fragments & Low & n/a \\
\hline Soil Colour \& Mottling & Low & - \\
\hline \begin{tabular}{c} 
Soil Permeability and Design \\
Loading Rates
\end{tabular} & High & \begin{tabular}{l} 
Soil has very low permeability (0.01 m/day). An ATU \\
should be used.
\end{tabular} \\
\hline pH & Moderate-High & \begin{tabular}{l} 
pH is high, see Section 9.4 Site has overall low \\
erosion/dispersion risk.
\end{tabular} \\
\hline Electrical Conductivity & Moderate & \begin{tabular}{l} 
EC is moderate, see Section 9.4. \\
\hline Phosphorus Adsorption
\end{tabular} Moderate \\
\hline
\end{tabular}

We consider that all of the constraints at the site can be appropriately mitigated at the site using the risk-based approach outlined in AS1547-2012.

\section*{11. SITE SUITABILITY AND RECOMMENDATIONS}

We consider that the site is suitable for disposal of wastewater. Disposal via beds/trenches (i.e., leach drains) is appropriate provided that:
- An aerobic treatment unit (ATU) is mitigated to reduce the risks associated with very low permeability soils.
- We recommend inverting of leach drains to reduce the depth of disposal.
- The required setbacks are met on site for the proposed LAA.
- Stormwater run-on and run-off are controlled in the civil design using grading and interception bunds.
- The LAA must be 6 m from the proposed drainage basin.

\section*{Land Application Area}

A minimum land application area (LAA) of \(720 \mathrm{~m}^{2}\) is required. Some reconfiguration of the site will be required to facilitate this LAA with the additional infrastructure proposed, but this area appears to be available.

\section*{Treatment System}

The treatment systems must be designed and installed in accordance with AS1547-2012 and the Department of Health Regulations. Department of Health approved disposal and treatment systems must be used.

The location of the treatment and disposal systems must meet the setback requirements as outlined in Section 8.16.

\section*{12. CLOSURE}

We draw your attention to Appendix G of this report, "Understanding your Report". The information provided within is intended to inform you as to what your realistic expectations of this report should be. This information is provided not to reduce the level of responsibility accepted by Galt, but to ensure that all parties who rely on this report are aware of the responsibilities each assumes in so doing.

\section*{GALT GEOTECHNICS PTY LTD}


Sean Coffey CPEng
Geotechnical Engineer

\footnotetext{
https://galtgeo.sharepoint.com/sites/WAG230373/Shared Documents/01 CBH SI Great Northern Hwy Miling/03 Correspondence/WAG230373-01 003 R Rev0.docx
}

Figures


\section*{Appendix A: Site Photographs}


Photograph 1: Facing west from near test pit location TP08.


Photograph 2: Facing west from near location TP04


Photograph 3: Facing east from near location TP01.


Photograph 4: Facing south from near location TP04.
- Galt


Photograph 5: Facing south from near location P03

\section*{Appendix B: Test Pit Reports}

\section*{METHOD OF SOIL DESCRIPTION BOREHOLE AND TEST PIT REPORTS}

GRAPHIC LOG \& SOIL CLASSIFICATION SYMBOLS
\begin{tabular}{|l|l|l|}
\hline Graphic & USCS & Soil Name \\
\hline & & FILL (various types) \\
\hline & & COBBLES / BOULDERS \\
\hline & GP & GRAVEL (poorly graded) \\
\hline & GW & GRAVEL (well graded) \\
\hline & SW & Slayey GRAVEL \\
\hline & SC & SAND (welly GRAVEL \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Graphic & USCS & Soil Name \\
\hline & SM & Silty SAND \\
\hline & ML & SILT (low liquid limit) \\
\hline & SILT (high liquid limit) \\
\hline & CLAY (low plasticity) \\
\hline & CI & CLAY (medium plasticity) \\
\hline & Ot & Prganic SILT (low liquid limit) \\
\hline
\end{tabular}

NOTE: Dual classification given for soils with a fines content between \(5 \%\) and \(12 \%\).
SOIL CLASSIFICATION AND INFERRED STRATIGRAPHY
Soil descriptions are based on AS1726-2017. Material properties are assessed in the field by visual/tactile methods in combination with field and laboratory testing techniques (where used).
NOTE: AS 1726-2017 defines a fine grained soil where the total dry mass of fine fractions ( \(<0.075 \mathrm{~mm}\) particle size) exceeds \(35 \%\).
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ PARTICLE SIZE } \\
\hline \multicolumn{2}{|c|}{ Soil Name } & Particle Size (mm) \\
\hline \multicolumn{2}{|c|}{ BOULDERS } & \(>200\) \\
\hline \multicolumn{2}{|c|}{ COBBLES } & 63 to 200 \\
\hline \multirow{3}{*}{ GRAVEL } & Coarse & 19 to 63 \\
\cline { 2 - 3 } & Medium & 6.7 to 19 \\
\cline { 2 - 3 } & Fine & 2.3 to 6.7 \\
\hline \multirow{3}{*}{ SAND } & Coarse & 0.6 to 2.36 \\
\cline { 2 - 3 } & Medium & 0.21 to 0.6 \\
\cline { 2 - 3 } & Fine & 0.075 to 0.21 \\
\hline \multirow{2}{*}{ FINES } & SILT & 0.002 to 0.075 \\
\cline { 2 - 3 } & CLAY & \(<0.002\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{RESISTANCE TO EXCAVATION} \\
\hline Symbol & Term & Description \\
\hline VE & Very easy & \multirow{5}{*}{All resistances are relative to the selected method of excavation} \\
\hline E & Easy & \\
\hline F & Firm & \\
\hline H & Hard & \\
\hline VH & Very hard & \\
\hline & & \\
\hline \multicolumn{3}{|r|}{CONSISTENCY} \\
\hline Symbol & Term & Undrained Shear Strength (kPa) \\
\hline VS & Very Soft & 0 to 12 \\
\hline S & Soft & 12 to 25 \\
\hline F & Firm & 25 to 50 \\
\hline St & Stiff & 50 to 100 \\
\hline VSt & Very Stiff & 100 to 200 \\
\hline H & Hard & >200 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ MOISTURE CONDITION } \\
\hline Symbol & Term \\
\hline D & Dry \\
\hline M & Moist \\
\hline W & Wet \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ CEMENTATION } \\
\hline Cementation & Description \\
\hline Weakly cemented & \begin{tabular}{c} 
Soil may be easily \\
disaggregated by hand \\
in air or water
\end{tabular} \\
\hline Moderately cemented & \begin{tabular}{c} 
Effort is required to \\
disaggregate the soil \\
by hand in air or water
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ ORGANIC SOILS } \\
\hline Material & \begin{tabular}{c} 
Organic Content \\
\(\%\) of dry mass
\end{tabular} \\
\hline \begin{tabular}{c} 
Inorganic \\
soil
\end{tabular} & \(<2 \%\) \\
\hline Organic soil & \(2 \%\) to \(25 \%\) \\
\hline Peat & \(>25 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ DENSITY } \\
\hline Symbol & Term & \begin{tabular}{c} 
Density \\
Index (\%)
\end{tabular} \\
\hline VL & Very Loose & \(<15\) \\
\hline L & Loose & 15 to 35 \\
\hline MD & Medium Dense & 35 to 65 \\
\hline D & Dense & 65 to 85 \\
\hline VD & Very Dense & \(>85\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{EXPLANATORY NOTES TO BE READ WITH BOREHOLE AND TEST PIT REPORTS} & \multicolumn{2}{|r|}{} \\
\hline \multicolumn{6}{|l|}{METHOD OF DRILLING OR EXCAVATION} \\
\hline AC & Air Core & E & Excavator & PQ3 & PQ3 Core Barrel \\
\hline AD/T & Auger Drilling with TC-Bit & EH & Excavator with Hammer & PT & Push Tube \\
\hline AD/V & Auger Drilling with V-Bit & HA & Hand Auger & R & Ripper \\
\hline AT & Air Track & HMLC & HMLC Core Barrel & RR & Rock Roller \\
\hline B & Bulldozer Blade & HQ3 & HQ3 Core Barrel & SON & Sonic Rig \\
\hline BH & Backhoe Bucket & N & Natural Exposure & SPT & Driven SPT \\
\hline CT & Cable Tool & NMLC & NMLC Core Barrel & WB & Washbore \\
\hline DT & Diatube & PP & Push Probe & x & Existing Excavation \\
\hline \multicolumn{6}{|l|}{SUPPORT} \\
\hline T & Timbering & & & & \\
\hline \multicolumn{6}{|l|}{PENETRATION EFFORT (RELATIVE TO THE EQUIPMENT USED)} \\
\hline VE & Very Easy & E & Easy & F & Firm \\
\hline H & Hard & VH & Very Hard & & \\
\hline \multicolumn{6}{|l|}{WATER} \\
\hline - & Water Inflow & & - Water Level & & \\
\hline 4 & Water Loss (complete) & & & & \\
\hline \(\checkmark\) & Water Loss (partial) & & & & \\
\hline \multicolumn{6}{|l|}{SAMPLING AND TESTING} \\
\hline B & Bulk Disturbed Sample & & P & Piston Sam & \\
\hline BLK & Block Sample & & PBT & Plate Bea & Test \\
\hline C & Core Sample & & U & Undisturb & Push-in Sample \\
\hline CBR & CBR Mould Sample & & & U50: 50 m & diameter \\
\hline D & Small Disturbed Sample & & SPT & Standard & netration Test \\
\hline ES & Environmental Soil Sample & & & Example: & , \(5 \mathrm{~N}=9\) \\
\hline EW & Environmental Water Sample & & & 3,4,5: Blo & per 150 mm \\
\hline G & Gas Sample & & & \(\mathrm{N}=9\) : Blow & er 300 mm after \\
\hline HP & Hand Penetrometer & & & & seating interval \\
\hline LB & Large Bulk Disturbed Sample & & vs & Vane She & P Peak \\
\hline M & Mazier Type Sample & & & \(\mathrm{R}=\) Remo & d (kPa) \\
\hline MC & Moisture Content Sample & & w & Water Sa & \\
\hline \multicolumn{6}{|l|}{ROCK CORE RECOVERY CRL} \\
\hline \multicolumn{6}{|l|}{TCR = Total Core Recovery (\%) \(=\frac{C R L}{T C L} \times 100\)} \\
\hline \multicolumn{6}{|l|}{\[
\text { RQD }=\text { Rock Quality Designation (\%) }=\frac{A L C>100}{T C L} \times 100
\]} \\
\hline TCL & Length of Core Run & & & & \\
\hline CRL & Length of Core Recovered & & & & \\
\hline ALC>100 & Total Length of Axial Lengths of & ore Grea & ater than 100 mm Long & & \\
\hline
\end{tabular}










\section*{Appendix C: Constant Head Permeameter Test Results}




\section*{Appendix D: Laboratory Test Results Geotechnical}
\begin{tabular}{|c|c|c|c|}
\hline & IL | AGGREGATE | & CRUS & NG \\
\hline \multicolumn{4}{|c|}{TEST REPORT - AS 1289.3.6.1} \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12011_1_PSD \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12011 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP03 0.4-0.7m & Date Tested: & 07/08-08/08/2023 \\
\hline
\end{tabular}

TEST RESULTS - Particle Size Distribution of Soil

\section*{Sampling Method:}

Sampled by Client, Tested as Received


\section*{Comments:}

Approved Signatory:


Name: Cody O'Neill
Date: 08/August/2023

NATA
Accredited for compliance with ISO/IEC 17025 - Testing
CCREDITATION
This document shall not be reproduced except in full
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & OIL | AGGREGATE | & \multicolumn{2}{|l|}{CRUSHING} \\
\hline & \multicolumn{3}{|l|}{TEST REPORT - AS 1289.3.1.1, 3.2.1, 3.3.1 \& 3.4.1} \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12011_1_PI \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12011 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP03 0.4-0.7m & Date Tested: & 8/08/2023 \\
\hline
\end{tabular}

\section*{TEST RESULTS - Consistency Limits (Casagrande)}

Sampling Method:
History of Sample:
Method of Preparation:

Sampled by Client, Tested as Received Oven Dried \(<50^{\circ} \mathrm{C}\) Dry Sieved

AS 1289.3.1.1
AS 1289.3.2.1
AS 1289.3.3.1
AS 1289.3.4.1

AS 1289.3.4.1
AS 1289.3.4.1

Liquid Limit (\%)
50
Plastic Limit (\%) 18
Plasticity Index (\%) 32

Linear Shrinkage (\%) 13.5

250
Condition of Dry Specimen:

\author{
Cracked, Curled
}

\section*{Comments:}

Approved Signatory:


Name: Cody O'Neill
Date: 09/August/2023
Accreditation No. 20599
Accredited for compliance
\(\underset{\substack{\text { wonu necomasio } \\ \text { AcCREDTITIIIN }}}{ }\) with ISO/IEC 17025-Testing
This document shall not be reproduced except in full
\begin{tabular}{ll|l|l} 
& SOlL & AGGREGATE & CONCRETE \\
& TEST REPORT - AS 1289.3.6.1 & CRUSHING \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12012_1_PSD \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12012 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP05 1.0-1.3m & Date Tested: & 07/08-08/08/2023
\end{tabular}

TEST RESULTS - Particle Size Distribution of Soil

\section*{Sampling Method:}

Sampled by Client, Tested as Received
\begin{tabular}{lc} 
Sieve Size (mm) & \begin{tabular}{c} 
Percent Passing \\
Sieve (\%)
\end{tabular}
\end{tabular}
150.0
100.0
75.0
37.5
19.0

100
9.5

100
4.75

97
2.36 90
1.18

86
0.600

76
0.425

70
0.300

62
0.150

46
0.075

40


\section*{Comments:}

Approved Signatory:


Name: Cody O'Neill
Date: 08/August/2023

\section*{NATA}

Accredited for compliance with ISO/IEC 17025 - Testing
accrenitation
This document shall not be reproduced except in full
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & OIL | AGGREGATE | & \multicolumn{2}{|l|}{CRUSHING} \\
\hline & \multicolumn{3}{|l|}{TEST REPORT - AS 1289.3.1.1, 3.2.1, 3.3.1 \& 3.4.1} \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12012_1_PI \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12012 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP05 1.0-1.3m & Date Tested: & 8/08/2023 \\
\hline
\end{tabular}

\section*{TEST RESULTS - Consistency Limits (Casagrande)}

Sampling Method:
History of Sample:
Method of Preparation:

Sampled by Client, Tested as Received Oven Dried \(<50^{\circ} \mathrm{C}\) Dry Sieved

AS 1289.3.1.1
Liquid Limit (\%) 44

AS 1289.3.2.1
AS 1289.3.3.1
AS 1289.3.4.1
Plastic Limit (\%) 16

Plasticity Index (\%) 28

Linear Shrinkage (\%) 11.0

AS 1289.3.4.1
AS 1289.3.4.1 Length of Mould (mm) 250

Condition of Dry Specimen:

\author{
Cracked, Curled
}

\section*{Comments:}

Approved Signatory:


Name: Cody O'Neill
Date: 09/August/2023
\begin{tabular}{|c|c|c|c|}
\hline & IL | AGGREGATE | & CRUS & NG \\
\hline \multicolumn{4}{|c|}{TEST REPORT - AS 1289.3.6.1} \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12013_1_PSD \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12013 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP06 2.2-2.5m & Date Tested: & 07/08-08/08/2023 \\
\hline
\end{tabular}

TEST RESULTS - Particle Size Distribution of Soil

\section*{Sampling Method:}

Sampled by Client, Tested as Received


\section*{Comments:}

Approved Signatory:


Name: Cody O'Neill
Date: 08/August/2023

NATA
Accredited for compliance with ISO/IEC 17025 - Testing
wopu uecognsen
accheritation
This document shall not be reproduced except in full

\begin{tabular}{ll|l|l} 
& SOlL & AGGREGATE & CONCRETE \\
& TEST REPORT - AS 1289.3.6.1 & CRUSHING \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12014_1_PSD \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12014 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP08 \(0.45-0.65 m\) & Date Tested: & 07/08-08/08/2023
\end{tabular}

TEST RESULTS - Particle Size Distribution of Soil

\section*{Sampling Method:}

Sampled by Client, Tested as Received


\section*{Comments:}

Approved Signatory:


Name: Cody O'Neill
Date: 08/August/2023

NATA
Accredited for compliance with ISO/IEC 17025 - Testing
CCREDITATION
This document shall not be reproduced except in full


\section*{TEST RESULTS - Consistency Limits (Casagrande)}

Sampling Method:
History of Sample:
Method of Preparation:

Sampled by Client, Tested as Received Oven Dried \(<50^{\circ} \mathrm{C}\) Dry Sieved

AS 1289.3.1.1 Liquid Limit (\%) 54
AS 1289.3.2.1
Plastic Limit (\%) 18

AS 1289.3.3.1
Plasticity Index (\%) 36

AS 1289.3.4.1
Linear Shrinkage (\%) 15.0

AS 1289.3.4.1
AS 1289.3.4.1 Length of Mould (mm)

125
Condition of Dry Specimen:
Curled

\section*{Comments:}

Approved Signatory:


Name: Cody O'Neill
Date: 09/August/2023
Accreditation No. 20599
Accredited for compliance
\(\underset{\substack{\text { waput hecoumse } \\ \text { cechebitation }}}{ }\) with ISO/IEC 17025 - Testing
This document shall not be reproduced except in full

W E S T E R N GEOTECHNICAL \& Laboratory Services
\begin{tabular}{lll|ll} 
& SOIL & AGGREGATE & CONCRETE & CRUSHING \\
& TEST REPORT - AS 1289.3.8.1 & & \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12014_1_ECN \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12014 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP08 0.45-0.65m & Date Tested: & 8/08/2023 \\
\hline \hline
\end{tabular}

TEST RESULTS - Emerson Class Number

Sampling Method:
Source of Material:
Soil Description:
Water Used:
Sampled by Client, Tested as Received
Not Specified

\section*{Sandy Clay with Gravel}

Distilled

EMERSON CLASS NUMBER

\section*{2}

Comments: Calcite present in sample.

Approved Signatory:

Name: Cody O'Neill
Date: 11/August/2023
\begin{tabular}{ll|l|l} 
& SOlL & AGGREGATE & CONCRETE \\
& TEST REPORT - AS 1289.3.6.1 & CRUSHING \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12015_1_PSD \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12015 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP09 0.5-0.7m & Date Tested: & 07/08-08/08/2023
\end{tabular}

TEST RESULTS - Particle Size Distribution of Soil

\section*{Sampling Method:}

Sampled by Client, Tested as Received
\begin{tabular}{lc} 
Sieve Size (mm) & \begin{tabular}{c} 
Percent Passing \\
Sieve (\%)
\end{tabular}
\end{tabular}
150.0
100.0
75.0
37.5
19.0

100
9.5

100
4.75

100
2.36

98
1.18

95
0.600

86
0.425

80
0.300

73
0.150

54
0.075

48


\section*{Comments:}

Approved Signatory:


Name: Cody O'Neill
Date: 08/August/2023

\section*{NATA}

Accredited for compliance with ISO/IEC 17025 - Testing
woplu fecomsin
Accheoltation
This document shall not be reproduced except in full


TEST RESULTS - Consistency Limits (Casagrande)

Sampling Method:
History of Sample:
Method of Preparation:

Sampled by Client, Tested as Received Oven Dried \(<50^{\circ} \mathrm{C}\) Dry Sieved

AS 1289.3.1.1
AS 1289.3.2.1
AS 1289.3.3.1
AS 1289.3.4.1

AS 1289.3.4.1
AS 1289.3.4.1

Liquid Limit (\%) 45

Plastic Limit (\%) 17
Plasticity Index (\%) 28

Linear Shrinkage (\%) 10.5

250
Condition of Dry Specimen:

Comments: Report replaces WG23.12015_1_PI. Report reissued due to updated Sampling Method.

Approved Signatory:


Name: Cody O'Neill
Date: 16-August-2023
Accreditation No. 20599
Accredited for compliance
\(\underset{\substack{\text { wept hecoumse } \\ \text { cechebitation }}}{ }\) with ISO/IEC 17025 - Testing
This document shall not be reproduced except in full

W E S T E R N GEOTECHNICAL \& Laboratory Services
\begin{tabular}{lll|ll} 
& SOIL & AGGREGATE & CONCRETE & CRUSHING \\
& & TEST REPORT - AS 1289.3.8.1 & & \\
\hline Client: & Cooperative Bulk Handling (CBH) & Ticket No. & S10545 \\
\hline Client Address: & - & Report No. & WG23.12015_1_ECN \\
\hline Project: & Proposed Accomodation Site & Sample No. & WG23.12015 \\
\hline Location: & Part Lot 80, Great Northern Highway, Miling & Date Sampled: & Not Specified \\
\hline Sample Identification: & TP09 0.5-0.7m & Date Tested: & 8/08/2023 \\
\hline
\end{tabular}

TEST RESULTS - Emerson Class Number

Sampling Method:
Source of Material:
Soil Description:
Water Used:
Sampled by Client, Tested as Received
Not Specified
Sandy Clay
Distilled

EMERSON CLASS NUMBER

\section*{2}

Approved Signatory:

Name: Cody O'Neill
Date: 11/August/2023

Accreditation No. 20599
Accredited for compliance
vopur recosnse
This document shall not be reproduced except in full

\section*{Appendix E: Laboratory Test Results Chemical}

16-18 Hayden Court Myaree WA 6154
ph +61893172505 fax +61893174163
lab@mpl.com.au
www.mpl.com.au

\section*{Certificate of Analysis PEH0322}

\section*{Client Details}
\begin{tabular}{ll} 
Client & Western Geotechnical \& Laboratory Services \\
Contact & Brooke Elliot \\
Address & 235 Bank Street, WELSHPOOL, WA, 6101 \\
Sample Details &
\end{tabular}
\begin{tabular}{ll} 
Your Reference & S10545-Proposed Accomodation Site - Part Lot 80, Great Northern Highway, Miling \\
Number of Samples & 2 Soil \\
Date Samples Received & \(04 / 08 / 2023\) \\
Date Samples Registered & \(04 / 08 / 2023\)
\end{tabular}

\section*{Analysis Details}

Please refer to the following pages for results, methodology summary and quality control data.
Samples were analysed as received from the client. Results relate specifically to the samples as received.
Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

\section*{Report Details}
\begin{tabular}{ll} 
Date Results Requested by & \(15 / 08 / 2023\) \\
Date of Issue & \(10 / 08 / 2023\)
\end{tabular}

NATA Accreditation Number 2901. This document shall not be reproduced except in full.
Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

\section*{Authorisation Details}
\begin{tabular}{ll} 
Results Approved By & \begin{tabular}{l} 
Heram Halim, Operations Manager \\
Lien Tang, Assistant Operations Manager
\end{tabular} \\
Laboratory Manager & Michael Kubiak
\end{tabular}

\section*{Certificate of Analysis PEH0322}

\section*{Samples in this Report}
\begin{tabular}{lllc}
\hline Envirolab ID & Sample ID & Matrix & Date Sampled \\
\hline DEH0322-01 & WG23.12014-TP08 0.45-0.65m Received \\
\hline PEH0322-02 & WG23.12015-TP09 0.5-0.7m & Soil & \(04 / 08 / 2023\) \\
\hline
\end{tabular}

\section*{Certificate of Analysis PEH0322}

\section*{Inorganics - General Physical Parameters (Soil)}
\begin{tabular}{llccc} 
Envirolab ID & Units & PQL & PEH0322-01 & PEH0322-02 \\
Your Reference & & & WG23.12014- & WG23.12015- \\
& & TP08 & TP09 0.5-0.7m \\
& & \(0.45-0.65 \mathrm{~m}\) & \\
Date Sampled & & \(04 / 08 / 2023\) & \(04 / 08 / 2023\) \\
\hline pH & pH units & & 9.6 & 9.7 \\
\hline Electrical Conductivity & \(\mu \mathrm{S} / \mathrm{cm}\) & 2.0 & 460 & 580 \\
\hline
\end{tabular}

\section*{Certificate of Analysis PEH0322}

\section*{PBI/PRI (Soil)}
\begin{tabular}{lccc} 
Envirolab ID & Units & PQL & PEH0322-01 \\
Your Reference & & WG23.12014- & WG23.12015- \\
& & TP08 & TP09 0.5-0.7m \\
& & \(0.45-0.65 \mathrm{~m}\) & \\
Date Sampled & \(04 / 08 / 2023\) & \(04 / 08 / 2023\) \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Phosphorus Retention Index & 19 & 11
\end{tabular}

\section*{Certificate of Analysis PEH0322}

Method Summary
\begin{tabular}{ll}
\hline Method ID & Methodology Summary \\
\hline AGRI-003_PRI & \begin{tabular}{l} 
Phosphorous Retention index (PRI) is the ratio of adsorbed phosphorus to the equilibrium concentration. Phosphorus is \\
extracted using KCl and determined colourimetrically. Result value is used to calculate PRI as per Allen and Jefferey.
\end{tabular} \\
INORG-001 & \begin{tabular}{l}
\(\mathrm{pH}-\) Measured using pH meter and electrode based on APHA latest edition, Method 4500-H+. Please note that the results \\
for water analyses are indicative only, as analysis can be completed outside of the APHA recommended holding times. \\
Solids are reported from a 1:5 water extract unless otherwise specified. Alternatively, pH is determined in a 1:5 extract \\
using 0.01M calcium chloride or a solid is extracted at a ratio of 1:2.5 ( AS1289.4.3.1), pH is measured in the extract.
\end{tabular} \\
INORG-002 & \begin{tabular}{l} 
Conductivity and Salinity - measured using a conductivity cell at \(25^{\circ} \mathrm{C}\) based on APHA latest edition Method 2510. Soil \\
results reported from a 1:5 Soil:Water extract unless otherwise specified. Please note Resistivity is estimated by calculation \\
and may not correlate with results otherwise obtained using the Resistivity current method (based on AS 1289.4.4.1), \\
depending on the nature of the soil being analysed.
\end{tabular}
\end{tabular}

\section*{Certificate of Analysis PEH0322}

\section*{Result Definitions}
\begin{tabular}{ll}
\hline Identifier & Description \\
\hline NR & Not reported \\
NEPM & National Environment Protection Measure \\
NS & Not specified \\
LCS & Laboratory Control Sample \\
RPD & Relative Percent Difference \\
\(\mathbf{>}\) & Greater than \\
< & Less than \\
PQL & Insufficient sample for this test Quantitation Limit \\
INS & Test not required \\
NA & Not tested \\
NT & Samples rejected due to particulate overload (air filters only) \\
DOL & Samples rejected due to filter damage (air filters only) \\
RFD & Samples rejected due to uneven deposition (air filters only) \\
RUD & Indicates a laboratory acceptance criteria outlier, for further details, see Result Comments and/or QC Comments \\
\#\# &
\end{tabular}

\section*{Quality Control Definitions}

\section*{Blank}

This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, and is determined by processing solvents and reagents in exactly the same manner as for samples.

\section*{Surrogate Spike}

Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

\section*{LCS (Laboratory Control Sample)}

This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

\section*{Matrix Spike}

A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

\section*{Duplicate}

This is the complete duplicate analysis of a sample from the process batch. The sample selected should be one where the analyte concentration is easily measurable.

\section*{Certificate of Analysis PEH0322}

\section*{Laboratory Acceptance Criteria}

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria. Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction. Spikes for Physical and Aggregate Tests are not applicable. For VOCs in water samples, three vials are required for duplicate or spike analysis.

General Acceptance Criteria (GAC) - Analyte specific criteria applies for some analytes and is reflected in QC recovery tables.
Duplicates: \(>10 \times P Q L-\) RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range \(20 \%-50 \%\) - see ELN-P05 QAQC tables for details (available on request); <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase. Matrix Spikes, LCS and Surrogate recoveries: Generally \(70-130 \%\) for inorganics/metals; \(60-140 \%\) for organics ( \(+/-50 \%\) surrogates) and \(10-140 \%\) for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was typically insufficient in order to satisfy laboratory QA/QC protocols.

\section*{Miscellaneous Information}

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached. We have taken the sampling date as being the date received at the laboratory.

Two significant figures are reported for the majority of tests and with a high degree of confidence, for results <10*PQL, the second significant figure may be in doubt i.e. has a relatively high degree of uncertainty and is provided for information only.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS where sediment/solids are included by default.

Urine Analysis - The BEI values listed are taken from the 2022 edition of TLVs and BEIs Threshold Limits by ACGIH.
Air volume measurements are not covered by Envirolab's NATA accreditation.
Australian Drinking Water Guidelines recommend that Thermotolerant Coliform \& E.Coli levels are less than \(1 \mathrm{cfu} / 100 \mathrm{~mL}\). The recommended maximums are taken from the latest "Australian Drinking Water Guidelines", published by NHMRC. No guideline values have been set for Total Coliforms in drinking water. Increased concentrations should be investigated. Total Coliforms are not considered useful as indicators of the presence of faecal contamination.

Where we have provided guideline values eg. ADWG Health Value, it is the responsiblity of the reader to decide if the water is fit for consumption. Please note that the tests we have conducted are just a selection of common tests to give you a general idea of drinking water quality. There are many other tests included in the ADWG that we have not tested for.

\section*{Client Details}
\begin{tabular}{ll} 
Client & Western Geotechnical \& Laboratory Services \\
Your Reference & S10545 - Proposed Accomodation Site - Part Lot 80, Great Northern Highway, Miling \\
Date Issued & \(10 / 08 / 2023\)
\end{tabular}

\section*{Recommended Holding Time Compliance}

No recommended holding time exceedances

Quality Control and QC Frequency
\begin{tabular}{lcl}
\hline QC Type & Compliant & Details \\
\hline Blank & Yes & No Outliers \\
\hline LCS & Yes & No Outliers \\
\hline Duplicates & Yes & No Outliers \\
\hline Matrix Spike & Yes & No Outliers \\
\hline Surrogates / Extracted Internal Standards & Yes & No Outliers \\
\hline QC Frequency & Yes & No Outliers
\end{tabular}

Surrogates/Extracted Internal Standards, Duplicates and/or Matrix Spikes are not always relevant/applicable to certain analyses and matrices. Therefore, said QC measures are deemed compliant in these situations by default. See Laboratory Acceptance Criteria for more information

Data Quality Assessment Summary PEH0322

Recommended Holding Time Compliance
\begin{tabular}{lccccc}
\hline Analysis & Sample Number(s) & Date Sampled & Date Extracted & Date Analysed & Compliant \\
\hline EC | Soil & \(1-2\) & \(04 / 08 / 2023\) & \(07 / 08 / 2023\) & \(08 / 08 / 2023\) & Yes \\
\hline pH | Soil & \(1-2\) & \(04 / 08 / 2023\) & \(07 / 08 / 2023\) & \(08 / 08 / 2023\) & Yes \\
\hline PRI | Soil & \(1-2\) & \(04 / 08 / 2023\) & \(07 / 08 / 2023\) & \(08 / 08 / 2023\) & Yes
\end{tabular}

INORG-001|Inorganics - General Physical Parameters (Soil) | Batch BEH0745
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Analyte} & \multirow{3}{*}{Units} & \multirow{3}{*}{PQL} & \multirow{3}{*}{Blank} & DUP1 & DUP2 & \multirow[t]{3}{*}{LCS \%} \\
\hline & & & & BEH0745-DUP1\# & \multirow[t]{2}{*}{BEH0745-DUP2\# Samp | QC | RPD \%} & \\
\hline & & & & Samp \| QC | RPD \% & & \\
\hline pH & pH units & & 8.2 & 9.0|8.9|0.224 & \(8.7|8.7| 0.345\) & 101 \\
\hline Electrical Conductivity & \(\mu \mathrm{S} / \mathrm{cm}\) & 2.0 & 2.00 & 71.0|71.3|0.422 & \(65.3|61.3| 6.32\) & 104 \\
\hline
\end{tabular}
\# The QC reported was not specifically part of this workorder but formed part of the QC process batch

\section*{AGRI-003_PRI|PBI/PRI (Soil) | Batch BEH0613}
\begin{tabular}{lcccc} 
Analyte & Units & PQL & Blank & \begin{tabular}{c} 
DUP1 \\
PEH0322-01
\end{tabular} \\
\hline Phosphorus Retention Index & & & & \\
\hline
\end{tabular}

\section*{Appendix F: Water Balance Calculation}

WA Site \& Soil Evaluation
Irrigation area sizing

\section*{Please read the attached notes before using this spreadsheet \\ Water Balance for Zero Storage}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Site Address: & \multicolumn{16}{|l|}{Part Lot 80, Great Northern Highway, Miling} \\
\hline Date: & \multicolumn{3}{|l|}{Tuesday, 22 August 2023} & & \multicolumn{2}{|l|}{Assessor:} & \multicolumn{10}{|l|}{Sean Coffey} \\
\hline \multicolumn{17}{|l|}{INPUT DATA} \\
\hline Design Wastewater Flow & Q & 2,160 & L/day & \multicolumn{13}{|l|}{Based on maximum potential occupancy and derived from the Supplement to Regulation 29 and Schedule 9 - Wastewater system loading rates} \\
\hline Design Irrigation Rate & DIR & 8.0 & mm/day & \multicolumn{13}{|l|}{Based on soil texture class/permeability and derived from Table M1 of AS/NZS 1547:2012} \\
\hline Nominated Land Application Area & L & 250 & \(\mathrm{m}^{2}\) & \multicolumn{13}{|l|}{} \\
\hline Crop Factor & C & 0.8-1.0 & unitless & \multicolumn{13}{|l|}{Estimates evapotranspiration as a fraction of pan evaporation; varies with season and crop type \({ }^{2}\)} \\
\hline Rainfall Runoff Factor & RF & 1.0 & untiless & \multicolumn{13}{|l|}{} \\
\hline Mean Monthly Rainfall Data & \multicolumn{3}{|c|}{Miling} & \multicolumn{13}{|l|}{BoM Station and number} \\
\hline Mean Monthly Pan Evaporation Data & \multicolumn{3}{|c|}{Berkshire Valley} & \multicolumn{13}{|l|}{BoM Station and number or data from the Evaporation Data for Western Australia Report (https://researchlibrary.agric.wa.gov.au/cgi/viewcontent.cgi?article=1058\&context=rmtr} \\
\hline Parameter & Symbol & Formula & Units & Jan & Feb & Mar & Apr & May & Jun & Jul & Aug & Sep & Oct & Nov & Dec & Total \\
\hline Days in month & D & & days & 31 & 28 & 31 & 30 & 31 & 30 & 31 & 31 & 30 & 31 & 30 & 31 & 365 \\
\hline Rainfall & R & & mm/month & 15.2 & 16.4 & 19.1 & 21.4 & 47.4 & 62.8 & 63 & 49.4 & 26.6 & 18.1 & 9.8 & 9.8 & 359 \\
\hline Evaporation & E & & mm/month & 381 & 343 & 304 & 183 & 117 & 74 & 73 & 96 & 127 & 200 & 276 & 373 & 2547 \\
\hline Crop Factor & c & & unitless & 1.00 & 1.00 & 0.90 & 0.90 & 0.80 & 0.80 & 0.80 & 0.80 & 0.90 & 1.00 & 1.00 & 1.00 & \\
\hline \multicolumn{17}{|l|}{OUTPUTS} \\
\hline Evapotranspiration & ET & ExC & mm/month & 381 & 343 & 274 & 165 & 94 & 59 & 58 & 77 & 114 & 200 & 276 & 373 & 2413.6 \\
\hline Percolation & B & DIRxD & mm/month & 248.0 & 224 & 248.0 & 240.0 & 248.0 & 240.0 & 248.0 & 248.0 & 240.0 & 248.0 & 240.0 & 248.0 & 2920.0 \\
\hline Outputs & & ET+B & \(\mathrm{mm} / \mathrm{month}\) & 629.0 & 567 & 521.6 & 404.7 & 341.6 & 299.2 & 306.4 & 324.8 & 354.3 & 448.0 & 516.0 & 621.0 & 5333.6 \\
\hline \multicolumn{17}{|l|}{INPUTS} \\
\hline Retained Rainfall & RR & RxRF & mm/month & 15.2 & 16.4 & 19.1 & 21.4 & 47.4 & 62.8 & 63 & 49.4 & 26.6 & 18.1 & 9.8 & 9.8 & 359 \\
\hline Applied Effluent & W & (QxD)/L & mm/month & 267.8 & 241.9 & 267.8 & 259.2 & 267.8 & 259.2 & 267.8 & 267.8 & 259.2 & 267.8 & 259.2 & 267.8 & 3153.6 \\
\hline Inputs & & RR+W & \(\mathrm{mm} / \mathrm{month}\) & 283.0 & 258.3 & 286.9 & 280.6 & 315.2 & 322.0 & 330.8 & 317.2 & 285.8 & 285.9 & 269.0 & 277.6 & 3512.6 \\
\hline \multicolumn{17}{|l|}{STORAGE CALCULATION} \\
\hline \multirow[t]{2}{*}{Storage remaining from previous month
Storage for the month} & & & mm/month & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 22.8 & 47.2 & 39.7 & 0.0 & 0.0 & 0.0 & \\
\hline & s & \((\mathrm{RR}+\mathrm{W})-(\mathrm{ET}+\mathrm{B})\) & mm/month & -346.0 & -308.7 & -234.7 & -124.1 & \(-26.4\) & 22.8 & 24.4 & -7.6 & -68.5 & -162.1 & -247.0 & -343.4 & \\
\hline \multirow[t]{3}{*}{Cumulative Storage Maximum Storage for Nominated Area} & M & & mm & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 22.8 & 47.2 & 39.7 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline & N & & mm & 47.24 & & & & & & & & & & & & \\
\hline & V & N×L & L & 11810 & & & & & & & & & & & & \\
\hline \multicolumn{3}{|l|}{LAND AREA REQUIRED FOR ZERO STORAGE} & \(\mathrm{m}^{2}\) & 109 & 110 & 133 & 169 & 228 & 274 & 275 & 243 & 198 & 156 & 128 & \multicolumn{2}{|l|}{110} \\
\hline \multicolumn{4}{|l|}{MINIMUM AREA REQUIRED FOR ZERO STORAGE:} & \multicolumn{13}{|l|}{\(276 \mathrm{~m}^{2}\)} \\
\hline
\end{tabular}

CELLS
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{} \\
Please enter data in blue cells \\
\hline XX & Enter available Land Application Area \\
\hline XX & Data in yellow cells is calculated by the spreadsheet, DO NOT ALTER THESE CELLS \\
\hline
\end{tabular}

NOTES
\({ }^{1}\) This value should be the largest of the following: land application area required based on the most limiting nutrient balance or minimum area required for zero storage
\({ }^{2}\) Values selected are suitable for grass in WA

\section*{Appendix G: Understanding Your Report}

\section*{UNDERSTANDING YOUR REPORT}

GALT FORM PMP11 Rev4

\section*{1. EXPECTATIONS OF THE REPORT}

This document has been prepared to clarify what is and is not provided in your report. It is intended to inform you of what your realistic expectations of this report should be and how to manage your risks associated with the conditions on site.

Geotechnical engineering and environmental science are less exact than other engineering and scientific disciplines. We include this information to help you understand where our responsibilities begin and end. You should read and understand this information. Please contact us if you do not understand the report or this explanation. We have extensive experience in a wide variety of projects and we can help you to manage your risk.

\section*{2. THIS REPORT RELATES TO PROJECT-SPECIFIC CONDITIONS}

This report was developed for a unique set of project-specific conditions to meet the needs of the nominated client. It took into account the following:
( the project objectives as we understood them and as described in this report;
* the specific site mentioned in this report; and
* the current and proposed development at the site.

It should not be used for any purpose other than that indicated in the report. You should not rely on this report if any of the following conditions apply:
( the report was not written for you;
* the report was not written for the site specific to your development;
the report was not written for your project (including a development at the correct site but other than that listed in the report); or
\& the report was written before significant changes occurred at the site (such as a development or a change in ground conditions).

You should always inform us of changes in the proposed project (including minor changes) and request an assessment of their impact.

Where we are not informed of developments relevant to your report, we cannot be held responsible or liable for problems that may arise as a consequence.

Where design is to be carried out by others using information provided by us, we recommend that we be involved in the design process by being engaged for consultation with other members of the project team. Furthermore, we recommend that we be able to review work produced by other members of the project team that relies on information provided in our report.

\section*{3. DATA PROVIDED BY THIRD PARTIES}

Where data is provided by third parties, it will be identified as such in our reports. We necessarily rely on the completeness and accuracy of data provided by third parties in order to draw conclusions presented in our reports. We are not responsible for omissions, incomplete or inaccurate data associated with third party data, including where we have been requested to provide advice in relation to field investigation data provided by third parties.

\section*{4. SOIL LOGS}

Our reports often include logs of intrusive and non-intrusive investigation techniques prepared by Galt. These logs are based on our interpretation of field data and laboratory results. The logs should only be read in conjunction with the report they were issued with and should not be re-drawn for inclusion in other documents not prepared by us.

\section*{5. THIRD PARTY RELIANCE}

We have prepared this report for use by the client. This report must be regarded as confidential to the client and the client's professional advisors. We do not accept any responsibility for contents of this document from any party other than the nominated client. We take no responsibility for any damages suffered by a third party because of any decisions or actions they may make based on this report. Any reliance or decisions made by a third party based on this report are the responsibility of the third party and not of us.

\section*{6. CHANGE IN SUBSURFACE CONDITIONS}

The recommendations in this report are based on the ground conditions that existed at the time when the study was undertaken. Changes in ground conditions can occur in numerous ways including anthropogenic events (such as construction or contaminating activities on or adjacent to the site) or natural events (such as floods, groundwater fluctuations or earthquakes). We should be consulted prior to use of this report so that we can comment on its reliability. It is important to note that where ground conditions have changed, additional sampling, testing or analysis may be required to fully assess the changed conditions.

\section*{7. SUBSURFACE CONDITIONS DURING CONSTRUCTION}

Practical constraints mean that we cannot know every minute detail about the subsurface conditions at a particular site. We use professional judgement to form an opinion about the subsurface conditions at the site. Some variation to our evaluated conditions is likely and significant variation is possible. Accordingly, our report should not be considered as final as it is developed from professional judgement and opinion.

The most effective means of dealing with unanticipated ground conditions is to engage us for construction support. We can only finalise our recommendations by observing actual subsurface conditions encountered during construction. We cannot accept liability for a report's recommendations if we cannot observe construction.

\section*{8. ENVIRONMENTAL AND GEOTECHNICAL ISSUES}

Unless specifically mentioned otherwise in our report, environmental considerations are not addressed in geotechnical reports. Similarly, geotechnical issues are not addressed in environmental reports. The investigation techniques used for geotechnical investigations can differ from those used for environmental investigations. It is the client's responsibility to satisfy themselves that geotechnical and environmental considerations have been taken into account for the site.

Geotechnical advice presented in a Galt Environmental report has been provided by Galt Geotechnics under a sub-contract agreement. Similarly, environmental advice presented in a Galt Geotechnics report has been provided by Galt Environmental under a sub-contract agreement.

Unless specifically noted otherwise, no parties shall draw any inferences about the applicability of the Western Australian state government landfill levy from the contents of this document.

O:\Administration\Standard Forms and Documents\PMP11-Rev3 Understanding your Report.docx

\section*{Project Number \& Title: M-3288 2023 Miling Accommodation Contractor:}
\begin{tabular}{|c|l|}
\hline Document Information & \\
\hline CBH Document Number & \begin{tabular}{c} 
Contractor Document \\
Number
\end{tabular} \\
\hline 342-3288-Cl-RPT-0001 & - \\
\hline
\end{tabular}
\begin{tabular}{|cccccc|}
\hline \multicolumn{3}{|c}{ Revision History } & & & \\
\hline \begin{tabular}{c} 
CBH \\
Rev No
\end{tabular} & \begin{tabular}{c} 
Contractor \\
Rev No.
\end{tabular} & Description & Date & \begin{tabular}{c} 
Approved By \\
(Contractor)
\end{tabular} & Approved By (CBH) \\
A & A & Issued for Review & \(27 / 09 / 2023\) & M. Johnston & C. Pan \\
0 & 0 & Issued for Use & \(06 / 10 / 2023\) & M. Johnston & C. Pan \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|l|l|}
\hline Rev & \multicolumn{1}{|c|}{ Date } & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{c|}{ Author } & \multicolumn{1}{c|}{\begin{tabular}{c} 
Independent \\
Review
\end{tabular}} & \multicolumn{1}{c|}{ Approved } \\
\hline A & \(27 / 09 / 2023\) & Issued for Review & M. Johnston & I. Castle & I. Castle \\
\hline 0 & \(06 / 10 / 2023\) & Issued for Use & M. Johnston & I. Castle & I. Castle \\
\hline & & & & & \\
\hline
\end{tabular}

The conclusions in the Report titled 2023 Miling Accommodation Drainage Report are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the scope of work was conducted and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from CBH (the "Client") and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided by the Client to applicable authorities having jurisdiction and to other third parties in connection with the project, Stantec disclaims any legal duty based upon warranty, reliance or any other theory to any third party, and will not be liable to such third party for any damages or losses of any kind that may result.

Prepared by:
Signature
\(\frac{\text { Matthew Johnston }}{\text { Printed Name }}\)

Printed Name

Reviewed by:

\section*{Signature}
\(\frac{\text { lain Castle }}{\text { Printed Name }}\)

Approved by:
Signature

Iain Castle
Printed Name

\section*{Table of Contents}
1 INTRODUCTION ..... 2
1.1 Objectives ..... 2
1.2 Technical Guidance ..... 2
1.3 Data ..... 2
1.4 Climate Change ..... 2
1.5 Terminology ..... 3
2 SITE DESCRIPTION AND PROPOSED DEVELOPMENT ..... 4
2.1 Geotechnical Conditions ..... 5
2.2 Existing Infrastructure ..... 5
2.3 Proposed Development ..... 6
3 STORMWATER MANAGEMENT ..... 7
3.1 Design Rainfall ..... 7
3.2 Design Criteria ..... 7
3.3 Predevelopment Outflow ..... 8
4 STORMWATER DESIGN ..... 9
4.1 Detention Basins ..... 9
4.2 Culverts ..... 9
4.3 Open Drains ..... 10
5 CONCLUSION ..... 11
LIST OF TABLES
Table 1: AR\&R Probability Terminology ..... 3
Table 2: Rainfall intensity ( \(\mathrm{mm} / \mathrm{h}\) ) for CBH Miling Site ..... 7
Table 3: Stormwater Design Criteria ..... 8
Table 4: Stormwater Detention Basin 01 Design Parameters ..... 9
LIST OF FIGURES
Figure 1: Project Site Location (Source: Google Maps) ..... 4
Figure 2: Town of Miling and Moore River with Contours (Source: Landgate Locate) ..... 5
Figure 3: Aerial of Existing Infrastructure (Source: Landgate Locate) ..... 6
LIST OF APPENDICES
APPENDIX A CONCEPT PLAN ..... 1
APPENDIX B CATCHMENT PLAN ..... 2
APPENDIX C CALCULATIONS ..... 3

\section*{1 Introduction}

Stantec have been engaged by CBH Group (CBH) as Engineering Consultants for the 2023 accommodation expansion (M-3288) at the 342 Miling Receival Site.

The proposed expansion will provide accommodation for up to 12 workers during peak harvest seasons. The development will be separate from the existing site, located off Dookling Drive.

\subsection*{1.1 Objectives}

This drainage design report provides details on the stormwater management strategy and drainage design for the site.

The objectives for this report are:
- Limit the outflow of the proposed expansion back to predevelopment flow rates.

\subsection*{1.2 Technical Guidance}

The design has aimed to follow guidelines set out by CBH Design Specification TS10A - Civil Earthworks, Roads and Drainage; and Australian Rainfall \& Runoff.

\subsection*{1.3 Data}

The design has been carried out using geospatial data from online resources and information supplied by CBH. The geospatial data utilised is listed below in increasing order of accuracy and preference:
- \(2 m\) Landgate contours
- Feature Survey undertaken by Handley Surveys in July 2023.

Other data utilised includes:
- Aerial photography from Landgate and Google Maps.

\subsection*{1.4 Climate Change}

At the date this assessment has been undertaken, no allowance has been made for changes in rainfall intensity due to climate change.

\subsection*{1.5 Temminology}

Annual Exceedance Probability (AEP) terminology has been adopted for consistency with the recommended probability terminology in Australian Rainfall \& Rainfall 2019. The use of Average Recurrence Interval (ARI) is no longer recommended and has changed to Annual Exceedance Probability (AEP), which is the probability or likelihood of an event occurring or being exceeded within any given year for flood risk. This preferred terminology is presented in Table 1.

Table 1: AR\&R Probability Terminology
\begin{tabular}{|c|c|c|c|}
\hline Frequency Descriptor & AEP (\%) & AEP (1 in X) & ARI \\
\hline Very Frequent & 98.17 & 1.02 & .25 \\
\hline & 95.02 & 4.05 & .33 \\
\hline Frequent & 86.47 & 1.16 & .5 \\
\hline & 63.21 & 1.58 & 1 \\
\hline & 50 & 2 & 1.44 \\
\hline & 39.35 & 2.54 & 2 \\
\hline Rare & 20 & 55 & 4.48 \\
\hline & 18.13 & 5.52 & 5 \\
\hline & 10 & 10 & 9.49 \\
\hline Very Rare & 5 & 20 & 20 \\
\hline & 2 & 50 & 50 \\
\hline & 1 & 100 & 100 \\
\hline & .5 & 200 & 200 \\
\hline & .2 & 500 & 500 \\
\hline & .1 & 1000 & 1000 \\
\hline Extreme & .05 & 2000 & 2000 \\
\hline & & 5000 & 5000 \\
\hline
\end{tabular}

\section*{2 Site Description and Proposed Development}

The town of Miling is located approximately 170 km north-northeast of Perth, Western Australia (refer Figure 1). CBH's Miling receival site is located on the western side of town and the proposed development is located in the southwest of the town, refer to figure 2.


Figure 1: Project Site Location (Source: Google Maps)


Figure 2: Town of Miling and Moore River with Contours (Source: Landgate Locate)

\subsection*{2.1 Geotechnic al Conditions}

The published Geological Series Map (1:250,000 Moora Sheet) indicates that the area is underlain by Colluvium (Lithic Sand) and Alluvium (Clay, Silt and Sand).

A Geotechnical investigation was undertaken by Galt Geotechnics for the proposed expansion with fieldwork conducted on the 31st July and \(1^{\text {st }}\) August 2023. Refer to report WAG230373-01 002 R Rev0 for further details and for the full scope of works.

The investigations found that the soil profile of the site generally comprises of Sand overlying Clayey Sand over Sandy Clay.

No groundwater information for the site has been provided but it was noted within the geotech report that while groundwater was not encountered in test pits to a depth of 2.5 m due to low permeability clayey soils, perched groundwater is likely after significant rainfall.

Permeability testing was conducted in three test pits on the site, with a saturated hydraulic conductivity of \(0.01 \mathrm{~m} /\) day found. Based on the results of the permeability testing on the soils encountered, for the purpose of stormwater management, the soil will be taken as impermeable for infiltration of runoff.

\subsection*{2.2 Existing Infrastructure}

The CBH Miling site is located on the western side of the Miling Town. The existing site currently has 105,000 tonnes of storage capacity split between three open bulkheads and two horizontal storage facilities and infrastructure for marshalling, sampling, and weighing, Refer to Figure 3.


Figure 3: Aerial of Existing Infrastructure (Source: Landgate Locate)

\subsection*{2.3 Proposed Development}

The proposed development to the existing Miling facility will add 12 accommodation units, a mess, a common area and parking. The proposed development will primarily take place to the south of the existing site on the eastern side of the rail siding.

\section*{3 Stomwater Management}

The stormwater management strategy for the site is for all surface runoff on the site to be managed to prevent flooding or damage to critical infrastructure, based on the following philosophy:
- Paved surfaces are graded to direct stormwater runoff to open drainage conveyance system;
- Open drain and culverts have been sized to convey 5\% AEP events;
- Detention basins to be provided to limit the post development flows to \(20 \%\) AEP predevelopment flow rates.

\subsection*{3.1 Design Rainfall}

Rainfall data for the Site has been obtained from the Bureau of Meteorology's Design Rainfall Data System (2016). A summary of the Intensity-Frequency-Duration data is shown in Table 2.

Table 2: Rainfall intensity ( \(\mathrm{mm} / \mathrm{h}\) ) for CBH Miling Site
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Duration } & \multicolumn{7}{|c|}{ Annual Exceedance Probability (AEP) } \\
\hline \(\mathbf{M i n}\) & Hr & \(63.20 \%\) & \(50 \%\) & \(20 \%\) & \(10 \%\) & \(5 \%\) & \(2 \%\) & \(1 \%\) \\
\hline \(\mathbf{5}\) & 0.083 & 47.8 & 54.4 & 76.7 & 93.2 & 111 & 136 & 156 \\
\hline \(\mathbf{1 0}\) & 0.167 & 36.2 & 41.3 & 58.5 & 70.8 & 84.0 & 102 & 117 \\
\hline \(\mathbf{2 0}\) & 0.333 & 25.0 & 28.6 & 40.5 & 49.2 & 58.2 & 70.8 & 81.3 \\
\hline \(\mathbf{3 0}\) & 0.5 & 19.6 & 22.4 & 31.6 & 38.4 & 45.4 & 55.6 & 63.8 \\
\hline \(\mathbf{6 0}\) & \(\mathbf{1}\) & 12.5 & 14.2 & 20 & 24.3 & 28.9 & 35.5 & 40.9 \\
\hline \(\mathbf{1 2 0}\) & \(\mathbf{2}\) & 7.90 & 8.90 & 12.5 & 15.2 & 18.1 & 22.3 & 25.9 \\
\hline \(\mathbf{1 8 0}\) & \(\mathbf{3}\) & 6.03 & 6.80 & 9.47 & 11.5 & 13.7 & 17.0 & 19.8 \\
\hline \(\mathbf{3 6 0}\) & \(\mathbf{6}\) & 3.82 & 4.30 & 5.93 & 7.22 & 8.60 & 10.7 & 12.5 \\
\hline \(\mathbf{7 2 0}\) & \(\mathbf{1 2}\) & 2.38 & 2.68 & 3.71 & 4.51 & 5.38 & 6.70 & 7.83 \\
\hline \(\mathbf{1 4 4 0}\) & \(\mathbf{2 4}\) & 1.44 & 1.62 & 2.25 & 2.74 & 3.28 & 4.09 & 4.79 \\
\hline \(\mathbf{2 8 8 0}\) & \(\mathbf{4 8}\) & 0.827 & 0.933 & 1.30 & 1.59 & 1.90 & 2.38 & 2.79 \\
\hline \(\mathbf{4 3 2 0}\) & \(\mathbf{7 2}\) & 0.592 & 0.668 & 0.928 & 1.13 & 1.34 & 1.67 & 1.97 \\
\hline
\end{tabular}

\subsection*{3.2 Design Criteria}

The stormwater drainage system has been designed in accordance with the requirements of CBH Design Specification TS10A - Civil Earthworks, Roads and Drainage (CBH-ENG-CI-SST-0001_rev3) and followed guidelines set out in the Australian Rainfall \& Runoff (ARR).

A summary of the stormwater design criteria adopted for the project is provided in Table 3.

\section*{Table 3: Stormwater Design Criteria}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{c}{ Parameter } \\
\hline Design AEP for Conveyance & \(5 \%\) \\
\hline Design AEP for On-site Detention & \(5 \%\) \\
\hline Design AEP for Pre-Development Outflow & \(20 \%\) \\
\hline Minimum Grade for Open Drains & \(0.3 \%\) \\
\hline Freeboard to top of subgrade & 300 mm for basins and conveyance drainage \\
\hline Maximum Outlet Velocity & \(2 \mathrm{~m} / \mathrm{s}\) (without scour protection) \\
\hline Maximum Side Slopes & \(1 \mathrm{~V}: 3 \mathrm{H}\) \\
\hline Minimum Drain Depth & 400 mm \\
\hline Runoff Co-efficient & Vegetated Ground: 0.19 \\
\hline & Paved Areas: 0.9 \\
\hline
\end{tabular}

\subsection*{3.3 Predevelopment Outfiow}

The undeveloped site currently drains west towards the rail siding. The flow is captured in an open drain besides the rail siding and conveyed towards under the rail before ultimately ending up at the Moore River. To not disadvantage the downstream infrastructure the outflow of the site will be limited to the \(20 \%\) AEP predevelopment flow rates.

The predevelopment flow was calculated using a runoff coefficient of \(C=0.20\), assuming the site was \(100 \%\) pervious in its undeveloped vegetated state.

The Time of Concentration for the pre-development flow rate was found using the Kinematic Wave Equation as recommended by ARR.

A pre-development flow rate of \(0.005 \mathrm{~m} 3 / \mathrm{s}\) was estimated for the site. Refer Appendix C for predevelopment flow rate calculation and site information used.

\section*{4 Stomwater Design}

The design for the internal stormwater management for the M-2836 Miling Site Expansion includes the following components:
- Detention Basin
- Culvert installations; and
- Open drains.

\subsection*{4.1 Detention Basins}

Stormwater detention basins have been sized to attenuate outflow from the site back to predevelopment rates for up to and including the critical 5\% AEP event. The Catchment Plan is presented in Appendix B.

Stormwater basins are designed with a low flow outlet to limit flows to 20\% AEP pre-development flow rates. An overflow weir is provided for each basin to convey storm events more than 5\% AEP.

Refer to Appendix C for basin storage and outlet flow calculations and parameters utilised.
A summary of the design parameters for Drainage Basin 01 is provided in Table 10.

Table 4: Stormwater Detention Basin 01 Design Parameters
\begin{tabular}{l|l|}
\hline Parameter & Basin 01 \\
\hline Pre-development Catchment & \(1,489 \mathrm{~m} 2 @ \mathrm{C}=0.2\) \\
& \\
\hline Pre-development Equivalent Impervious Area & 298 m 2 \\
\hline Predevelopment Outflow Q & \(0.005 \mathrm{~m} 3 / \mathrm{s}\) \\
\hline Post-development Catchment & \(318.5 \mathrm{~m} 2 @ \mathrm{C}=0.2\) \\
& \(1,170 \mathrm{~m} 2 @ \mathrm{C}=0.9\) \\
\hline Post-development Equivalent Impervious Area & \(1,117 \mathrm{~m} 2\) \\
\hline Design AEP Event Detained & \(5 \% \mathrm{AEP}\) minus 20\% Predevelopment outflow \\
\hline Basin Volume Required & \(20 \mathrm{~m}^{3}(\mathrm{Critical} 60 \mathrm{~min}\) duration) \\
\hline Basin Volume Provided & \(22 \mathrm{~m}^{3}\) \\
\hline Low Flow Outlet & DN 150 mm SN8 uPVC with 80mm orifice (screw \\
\hline cap) \\
\hline Out Flow Wier & 1 m long \(\times 0.1 \mathrm{~m}\) high \\
\hline
\end{tabular}

\subsection*{4.2 Culverts}

Culverts shall be used to convey the stormwater to the proposed basins. To convey a peak flow of \(0.04 \mathrm{~m} 3 / \mathrm{s}\) for the open drains the following minimum dimensions are recommended:
- \(1 \%\) longitudinal fall
- 225 mm diameter
- 600mm cover

\subsection*{4.3 Open Drains}

Open drains shall be used to convey the stormwater to the proposed basins. To convey a peak flow of \(0.04 \mathrm{~m} 3 / \mathrm{s}\) for the open drains the following minimum dimensions are recommended:
- \(1 \%\) longitudinal fall
- 1m wide base
- 0.2 m depth (exclusive of freeboard)
- Freeboard to top of subgrade: 300 mm .
- \(1 \mathrm{H}: 3 \mathrm{~V}\) side slopes

\section*{5 Conclusion}

As per CBH specifications the stormwater detention basins have been sized to limit outflow from the site in a \(5 \%\) AEP rainfall event to pre-development flow rates.

The proposed Basins 01 has a capacity of \(22 \mathrm{~m}^{3}\left(20 \mathrm{~m}^{3}\right.\) required) to detain runoff from the site. The basin will have a low flow outlet sized to discharge the 20\% AEP predevelopment event and an overflow weir designed to discharge storm events greater than \(5 \%\) AEP. Basins, open drains, bunds and culverts should be inspected, maintained and cleaned periodically to achieve continuous functionality.

\section*{Concept Plan}

\section*{Appendix A Concept Plan}


\section*{Appendix B Catchment Plan}


\section*{Appendix C Calculations}

PROJECT: CBH Miling - Accommodation
Stantec
SECTION: Burea of Meteorology - Design Rainfall Data

CALC. BY \(\qquad\) M. Johnston CHKD. BY \(\qquad\) APPD. BY OF 3 REV. NO.

Coordinates: Latitude: -30.493975, Longitude: 116.360209
Nearest Grid: Latitude: 30.4875 (S), Longitude: 116.3625 (E)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Duration} & \multicolumn{7}{|c|}{Annual Exceedance Probability (AEP)} \\
\hline Min & Hr & 63.20\% & 50\% & 20\% & 10\% & 5\% & 2\% & 1\% \\
\hline 5 & 0.083 & 47.8 & 54.4 & 76.7 & 93.2 & 111 & 136 & 156 \\
\hline 10 & 0.167 & 36.2 & 41.3 & 58.5 & 70.8 & 84.0 & 102 & 117 \\
\hline 20 & 0.333 & 25.0 & 28.6 & 40.5 & 49.2 & 58.2 & 70.8 & 81.3 \\
\hline 30 & 0.5 & 19.6 & 22.4 & 31.6 & 38.4 & 45.4 & 55.6 & 63.8 \\
\hline 60 & 1 & 12.5 & 14.2 & 20 & 24.3 & 28.9 & 35.5 & 40.9 \\
\hline 120 & 2 & 7.90 & 8.90 & 12.5 & 15.2 & 18.1 & 22.3 & 25.9 \\
\hline 180 & 3 & 6.03 & 6.80 & 9.47 & 11.5 & 13.7 & 17.0 & 19.8 \\
\hline 360 & 6 & 3.82 & 4.30 & 5.93 & 7.22 & 8.60 & 10.7 & 12.5 \\
\hline 720 & 12 & 2.38 & 2.68 & 3.71 & 4.51 & 5.38 & 6.70 & 7.83 \\
\hline 1440 & 24 & 1.44 & 1.62 & 2.25 & 2.74 & 3.28 & 4.09 & 4.79 \\
\hline 2880 & 48 & 0.827 & 0.933 & 1.30 & 1.59 & 1.90 & 2.38 & 2.79 \\
\hline 4320 & 72 & 0.592 & 0.668 & 0.928 & 1.13 & 1.34 & 1.67 & 1.97 \\
\hline
\end{tabular}

CALC. BY M. Johnston CHKD. BY APPD. BY REV. NO. A

\section*{Parameters}

Design AEP for Predevelopment Outflon 20\%
Design AEP for On-site Detention 5\%
Infiltration No
Infiltration Rate (m/ day) 0

Pre-development Catchment
\begin{tabular}{|r|r|c|r|}
\hline Area & \multicolumn{1}{c|}{\(\mathrm{m}^{2}\)} & \multicolumn{1}{c|}{C} & \multicolumn{1}{c|}{ C*A } \\
\hline Permeable & 1488.7 & 0.2 & 297.74 \\
\hline Impermeable & 0 & 0.9 & 0 \\
\hline Total & \(\mathbf{1 4 8 8 . 7}\) & & \(\mathbf{2 9 7 . 7 4}\) \\
\hline
\end{tabular}

Post-development Catchment
\begin{tabular}{|r|c|c|r|}
\hline Area & \(\mathrm{m}^{2}\) & C & \(\mathrm{C}^{*} \mathrm{~A}\) \\
\hline Permeable & 318.5 & 0.2 & 63.7 \\
\hline Impermeable & \(1,170.2\) & 0.9 & \(1,053.2\) \\
\hline Total & \(\mathbf{1 , 4 8 8 . 7}\) & & \(\mathbf{1 , 1 1 6 . 9}\) \\
\hline
\end{tabular}

\section*{Pre-Development}
\begin{tabular}{|l|r|l|}
\hline Length & 95 m \\
\hline Slope & \(0.02 \mathrm{~m} / \mathrm{m}\) \\
\hline Manning's n & 0.035 & \\
\hline Critical Tc & 8.87 min \\
\hline Intensity & \(61.72 \mathrm{~mm} / \mathrm{h}\) \\
\hline Peak Discharge & \(0.0051 \mathrm{~m}^{3} / \mathrm{s}\) \\
\hline
\end{tabular}

\section*{Basin Data}
\begin{tabular}{|l|r|l|l|r|l|r|r|}
\hline \multicolumn{2}{|l|}{ Basin Characteristics } & \multicolumn{3}{l|}{ Base Dimensions } & \multicolumn{3}{l|}{ Top Dimensions } \\
\hline Free Board & 0.3 m & Width & 10 m & Width & 13.6 m \\
\hline Side Slope & \(3(1: \mathrm{X})\) & Length & 6 m & Length & 9.6 m \\
\hline Depth & 0.3 m & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|r|l|l|l|l|l|l|l|}
\hline Basin Storage & \multicolumn{4}{l|}{ Low Flow Outlet } & \multicolumn{4}{l|}{ Overflow Weir } \\
\hline Volume & 22.6 & \(\mathrm{~m}^{3}\) & Material & uPVC & & Discharge & 0.0484 & \(\mathrm{~m}^{3} / \mathrm{s}\) \\
\hline Infiltration & 93.8 & \(\mathrm{~m}^{2}\) & & Diameter & 80 & mm & Weir Coeff & 1.69 \\
\hline & & & Manning i & 0.011 & Metric & Weir Height & 0.1 & m \\
\hline & & & Slope & 100 & 1 in x & Weir Width & 0.91 & m \\
\hline & & & Pipe & 0.003 & \(\mathrm{~m}^{3} / \mathrm{s}\) & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|c|}
\hline Storm Discharge and Volumes \\
\hline Duration \((\mathrm{Min})\) & 5 & 10 & 20 & 30 & 60 & 120 & 360 & 720 \\
\hline Intensity \((\mathrm{mm} / \mathrm{hr})\) & 110.64 & 84 & 58.2 & 45.4 & 28.9 & 18.05 & 8.6 & 5.375 \\
\hline Area \(\left(\mathrm{m}^{2}\right)\) & 1116.88 & 1116.88 & 1116.88 & 1116.88 & 1116.88 & 1116.88 & 1116.88 & 1116.88 \\
\hline Ave Storm Q \(\left(\mathrm{m}^{3} / \mathrm{s}\right)\) & 0.03 & 0.03 & 0.02 & 0.01 & 0.01 & 0.01 & 0.00 & 0.00 \\
\hline Storm Volume \(\left(\mathrm{m}^{3}\right)\) & 10.30 & 15.64 & 21.67 & 25.35 & 32.28 & 40.32 & 57.63 & 72.04 \\
\hline Infiltration \(\left(\mathrm{m}^{3}\right)\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Outflow \(\left(\mathrm{m}^{3}\right)\) & 1.0 & 2.0 & 4.0 & 6.1 & 12.1 & 24.2 & 72.7 & 145.5 \\
\hline Max Retention \(\left(\mathrm{m}^{3}\right)\) & 9.3 & 13.6 & 17.6 & 19.3 & 20.2 & 16.1 & -15.1 & -73.4 \\
\hline Storage Volume \(\left(\mathrm{m}^{3}\right)\) & 22.64 & 22.64 & 22.64 & 22.64 & 22.64 & 22.64 & 22.64 & 22.64 \\
\hline Additional Volume \(\left(\mathrm{m}^{3}\right)\) & -13.36 & -9.03 & -5.02 & -3.35 & -2.49 & -6.57 & -37.74 & -96.06 \\
\hline
\end{tabular}
© Stantec
SECTION: Drain Capacity
CALC. BY M. Johnston CHKD. BY \(\qquad\) APPD. BY

\section*{Drain Capacity Calculations}

\section*{Drain Details}

Drain ID
\begin{tabular}{|rc|}
\hline Drain Geometry & \\
\hline Depth & 0.5 m \\
Manning's n & 0.022 \\
Slope of Drain (S) & \(1 \%\) \\
Base Width & 1 m \\
Side Slopes & \(31: \mathrm{x}\)
\end{tabular}

\section*{CBH Group \\ TS10A Design Specification Civil Earthworks, Roads and Drainage}

Table 6.2: Runoff Coefficients and Manning ' \(n\) '

\section*{Drain Hydraulics}

Area (A) \(\quad 1.25 \mathrm{~m}^{2}\)
Top Width \(\quad 4 \mathrm{~m}\)
Netted Perimeter (P) 4.1623 m
Hydraulic Radius (R) 0.30
Hydraulic Depth 0.31

\section*{Austraods}

AGRD05B - Guide to Road Design Part 5B
\[
R=\frac{A}{P}
\]

Eq 4

\section*{Manning's}
\[
\begin{array}{rr}
\hline \text { Velocity (V) } & 0.204 \mathrm{~ms}^{-1} \\
\text { Discharge (Q) } & 0.3 \mathrm{~m}^{3} \mathrm{~s}^{-1}
\end{array}
\]
\(V=\frac{1}{n} \times R^{2 / 3} \times S^{1 / 2}\)
Eq 3
\(Q=A \times V\)
Eq 1



\section*{Transport Impact Statement}
\begin{tabular}{r|l} 
Project: & \begin{tabular}{l} 
Proposed Accommodation Development \\
Client:
\end{tabular} \\
18201 Great Northern Highway, Miling \\
Author: & CBH Group \\
Date: & Paul Nguyen \\
22nawnac September 2023 \\
Document \#: & \(2309002-\) TIS-001
\end{tabular}

Document Status: Client Review
\begin{tabular}{l|l|l|l|l} 
Version & Prepared By & Reviewed By & \multicolumn{2}{|c}{ Approved By } \\
\hline A & P. Nguyen & L. De Leon & P. Nguyen & 22/09/2023 \\
\hline & & & & \\
\hline
\end{tabular}

Disclaimer
Although all care has been taken in the preparation of this document, Shawmac Pty Ltd and all parties associated with the preparation of this document disclaim any responsibility for any errors or omissions. Shawmac Pty Ltd reserves the right to amend or change this document at any time. This document does not constitute an invitation, agreement or contract (or any part thereof) of any kind whatsoever. Liability is expressly disclaimed by Shawmac Pty Ltd for any loss or damage which may be sustained by any person acting on this document.
© Shawmac Pty. Ltd. 2023 ABN 51828614001

File Reference: Y:\Jobs Active 2023IT\&T - Traffic \& ParkinglCBH_18201 GNH, Miling_TIS_2309002l3. Documentsl3.2 ReportsICBH_18201 GNH, Miling_TIS_Rev A.docx

\section*{Contents}
1. Introduction ..... 1
1.1. Proponent ..... 1
1.2. Site Location ..... 1
2. Proposed Development ..... 3
3. Traffic Management on Frontage Streets ..... 5
3.1. Road Network Layout and Hierarchy ..... 5
3.2. Speed Limits ..... 6
3.3. Traffic Volumes ..... 7
4. Vehicle Access and Parking ..... 11
4.1. Access ..... 11
4.2. Car Parking ..... 13
4.2.1. Planning Scheme Requirements ..... 13
4.2.2. Parking Design ..... 14
4.3. Bicycle Parking ..... 15
4.4. Provision for Service Vehicles ..... 15
5. Traffic Generation ..... 16
6. Pedestrian and Cyclist Access ..... 17
7. Public Transport Access ..... 17
8. Site Specific Issues and Safety Issues ..... 18
8.1. Crash History ..... 18
9. Conclusion ..... 19

\section*{Figures}
Figure 1: Site Location ..... 2
Figure 2: Aerial View ..... 2
Figure 3: Site Layout ..... 4
Figure 4: Existing Road Network Hierarchy ..... 5
Figure 5: Existing Speed Limits ..... 6
Figure 6: Traffic Volumes - Great Northern Highway south of Midlands Road - Average Weekday ..... 7
Figure 7: Traffic Volumes - Great Northern Highway south of Midlands Road - Average Weekend ..... 8
Figure 8: Traffic Volumes - Great Northern Highway south of Northam Pithara Road - Average Weekend ..... 9
Figure 9: Traffic Volumes - Great Northern Highway south of Northam Pithara Road - Average Weekend ..... 10
Figure 10: Vehicle Access Arrangement ..... 11
Figure 11: Sight Distance Check - Dookling Drive ..... 12
Figure 12: Classification of Parking Facilities ..... 14
Tables
Table 1: AS2890.1 Car Parking Compliance ..... 14

\section*{1. Introduction}

\subsection*{1.1. Proponent}

Shawmac has been engaged by CBH Group to prepare a Transport Impact Statement (TIS) for a proposed accommodation development in Miling.

This TIS has been prepared in accordance with the Western Australian Planning Commission (WAPC) Transport Impact Assessment Guidelines Volume 4 - Individual Developments. The assessment considers the following key matters:
- Details of the proposed development.
- Vehicle access and parking.
- Provision for service vehicles.
- Daily traffic volumes and vehicle types.
- Traffic management on frontage streets.
- Public transport access.
- Pedestrian access.
- Cycle access
- Site specific and safety issues.

\subsection*{1.2. Site Location}

The site address is 18201 Great Northern Highway in Miling but it is noted that the site does not have direct frontage to Great Northern Highway. The local authority is the Shire of Moora.

The general site location is shown in Figure 1 and an aerial view of the site is shown in Figure 2.


Figure 1: Site Location


Figure 2: Aerial View

\section*{2. Proposed Development}

CBH are proposing to construct an accommodation development on the site comprising 12 rooms, a common room, a kitchen / laundry building and parking for 13 cars. The development will be occupied by CBH workers who will travel to and from the nearby CBH site.

The proposed site plan is shown in Figure 3.


Figure 3: Site Layout

\section*{3. Traffic Management on Frontage Streets}

\subsection*{3.1. Road Network Layout and Hierarchy}

The layout and hierarchy of the existing local road network according to the Main Roads WA Road Information Mapping System is shown in Figure 4.


Figure 4: Existing Road Network Hierarchy
As shown, both Great Northern Highway and Dookling Drive are Primary Distributor roads which are under the jurisdiction of Main Roads WA. It is understood that Dookling Drive was the former alignment of Great Northern Highway and currently functions as a lower order road similar to a Local Distributor.

\subsection*{3.2. Speed Limits}

The speed limits are shown in Figure 5. As shown, there are some gaps in the speed data. Based on Google Street View, the speed limit on the southern section of Dookling Drive is \(50 \mathrm{~km} / \mathrm{h}\) and the speed limit on Miling West Road west of Great Northern Highway is \(60 \mathrm{~km} / \mathrm{h}\).


Figure 5: Existing Speed Limits

\subsection*{3.3. Traffic Volumes}

The latest traffic volumes along Great Northern Highway were obtained from Main Roads WA Traffic Map as summarised in Figure 6 to Figure 9. There was no traffic data in the immediate vicinity of Miling and so the data shown are from Network Performance Sites (NPS) on Great Northern Highway on either side of Miling as a general indication of traffic.


Figure 6: Traffic Volumes - Great Northern Highway south of Midlands Road - Average Weekday


Figure 7: Traffic Volumes - Great Northern Highway south of Midlands Road - Average Weekend


Figure 8: Traffic Volumes - Great Northern Highway south of Northam Pithara Road - Average Weekend
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|r|}{SITE 5099} \\
\hline \multicolumn{8}{|l|}{Hourly Volume} \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Great Northern Hwy (H006) \\
South of Northam Pithara Rd (SLK 216.40)
\end{tabular}}} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|c|}{All Vehicles} \\
\hline & NB & SB & Wes Both & NB & SB & Both & (2) \\
\hline 00:00 & 5 & \multicolumn{2}{|r|}{510} & 4 & 4 & 8 & 80.0 \\
\hline 01:00 & 2 & 4 & 6 & 2 & 4 & 6 & 100.0 \\
\hline 02:00 & 2 & 5 & 7 & 2 & 4 & 6 & 85.7 \\
\hline 03:00 & 3 & 4 & 7 & 2 & & 5 & 71.4 \\
\hline 04:00 & 3 & 6 & 9 & 2 & 3 & 6 & 66.7 \\
\hline 05:00 & 6 & 7 & 13 & 3 & \(\frac{4}{5}\) & 8 & 61.5 \\
\hline 06:00 & 14 & 15 & 29 & 5 & 10 & 15 & 51.7 \\
\hline 07:00 & 23 & 26 & 49 & 12 & 15 & 27 & 55.1 \\
\hline 08:00 & 31. & 29 & 60 & 15 & 15 & 30 & 50.0 \\
\hline 09:00 & 31 & 34 & 65 & 14 & 17 & 31 & 47.7 \\
\hline 10:00 & 32 & 35 & 67 & 15 & 18 & 33 & 49.3 \\
\hline 11:00 & 35 & 37 & 72 & 15 & 18 & 33 & 45.8 \\
\hline 12:00 & 33 & 35 & 68 & 15 & 16 & 31 & 45.6 \\
\hline 13:00 & 27 & 39 & 66 & 11 & 19 & 30 & 45.5 \\
\hline 14:00 & 23 & 36 & 59 & 10 & 18 & 28 & 47.5 \\
\hline 15:00 & 22 & 30 & 52 & 11 & 14 & 25 & 48.1 \\
\hline 16:00 & 21 & 23 & 44 & 10 & 13 & 23 & 52.3 \\
\hline 17:00 & 19 & 23 & 42 & 9 & 13 & 22 & 52.4 \\
\hline 18:00 & 16 & 15 & 31 & 6 & 9 & 15 & 48.4 \\
\hline 19:00 & 13 & 15 & 28 & 6 & 10 & 16 & 57.1 \\
\hline 20:00 & 12 & 10 & 22 & 6 & 7 & 13 & 59.1 \\
\hline 21:00 & 4 & 9 & 13 & 2 & 8 & 10 & 76.9 \\
\hline 22:00 & 5 & 5 & 10 & 3 & 4 & 7 & 70.0 \\
\hline 23:00 & 3 & 3 & 6 & 1 & 2 & 3 & 50.0 \\
\hline TOTAL & 385 & 450 & 835 & 181 & 250 & 431 & 51.6 \\
\hline \multicolumn{8}{|r|}{Peak Statistics} \\
\hline AM TIME & 10:15 & 09:45 & 11:00 & 09:25 & 09:45 & \multicolumn{2}{|l|}{09:45} \\
\hline VOL & 36 & 39 & 72 & 17 & 20 & 35 & \\
\hline PM TIME & 12:15 & 13:30 & 12:30 & 1230 & 1330 & \multirow[t]{2}{*}{\(12: 30\)
33} & \\
\hline VOL & 33 & 40 & 68 & 15 & 21 & & \\
\hline
\end{tabular}

Figure 9: Traffic Volumes - Great Northern Highway south of Northam Pithara Road - Average Weekend

According to Austroads Guide to Traffic Management Part 3: Transport Study and Analysis Methods, the capacity of a two-lane highway is 1,700 passenger cars per hour for each direction of travel. The current hourly volumes are well within the capacity of the road.

Traffic volumes for Dookling Drive were not available. As this is a relatively short local road, traffic volumes are estimated to be low and less than 1,000 vehicles per day (vpd) which would be well below the target daily traffic volume of 3,000vpd for a Local Distributor Road.

\section*{4. Vehicle Access and Parking}

\subsection*{4.1. Access}

Vehicle access to the site is proposed via a new driveway and crossover on Dookling Drive as shown in Figure
10.


Figure 10: Vehicle Access Arrangement
Sight distance requirements from vehicle exit points are defined in Figure 3.2 of AS2890.1 which are based on the Austroads Stopping Sight Distance (SSD). Based on the \(60 \mathrm{~km} / \mathrm{h}\) speed limit along Dookling Drive, the minimum SSD requirement is 73 m .

The sight distance check is shown in Figure 11. As shown, the required SSD is achieved in both directions. It is noted that the speed limit reduces to \(50 \mathrm{~km} / \mathrm{h}\) to the south of the site and \(40 \mathrm{~km} / \mathrm{h}\) to the north of the site and so the actual sight distance requirement will be less.

Vertically, the alignment of Dookling Drive is relatively flat with no major crests or sags that impact sight distance.


Figure 11: Sight Distance Check - Dookling Drive

\subsection*{4.2. Car Parking}

It is proposed to provide 14 car parking bays on the site.

\subsection*{4.2.1. Planning Scheme Requirements}

The car parking requirements for developments in the Shire of Moora are not specified in the Shire's Town Planning Scheme No. 4 (TPS4). The TPS4 only states that "a person shall not develop or use any land or erect or adapt any building unless car parking spaces specified by the local government are provided and such spaces are constructed and maintained in accordance with the requirements of the local government".

Standard practice and rates in other local government are require the provision of 1 car bay per room or accommodation unit plus visitor parking. Workers accommodation sites are unlikely generate or allow visitors and so it is assumed that the parking requirement would be 1 car bay per room.

Based on the proposed 12 rooms, 12 bays would be considered to be sufficient for the workers. There may be a small number of staff movements (laundry, maintenance etc.). It is understood that staff movements are expected to occur only during the day when workers are away from the site.

Overall, the proposed 13 bays is assessed as being sufficient.

\subsection*{4.2.2. Parking Design}

Car parking areas are typically required to comply with the requirements of Australian Standard AS2890.1. The user class will depend on the purpose of the bay as detailed in Figure 12.


Figure 12: Classification of Parking Facilities
Resident parking (long-term parking) would be classified as User Class 1A. A summary of the AS2890.1 parking requirements is detailed in Table 1.

Table 1: AS2890.1 Car Parking Compliance
\begin{tabular}{l|c|c}
\multicolumn{1}{c}{ Dimension } & Requirement & \\
\hline 90 degree parking - Class 1 - Long Term Parking (Residents) & 3.0 m \\
\hline Car Bay Width & 2.4 m & 6.0 m \\
\hline Car Bay Length & 5.4 m & 6.0 m \\
\hline Parking Aisle Width & 5.8 m & \\
\hline
\end{tabular}

As shown, the key parking dimensions are compliant with AS2890.1.

\subsection*{4.3. Bicycle Parking}

The proposed use is unlikely to generate any demand for cycling and so the provision of bicycle parking or end of trip facilities is not considered to be warranted.

\subsection*{4.4. Provision for Service Vehicles}

It is assumed that waste will be collected from the verge via the council waste collection service and so there is no requirement to accommodate waste vehicles on the site.

\section*{5. Traffic Generation}

The proposed development will accommodate CBH workers who will be working at the nearby CBH facility.
Assuming all workers drive individually, it is estimated that the development will generate approximately 12 vehicle movements during each peak hour, including 12 outbound vehicle movements during the morning peak hour and 12 inbound vehicle movements during the afternoon peak hour. This estimate is considered to be a worst-case scenario as some workers may travel together and some may potentially be transported by bus.

According to the WAPC TIA guidelines, an increase of between 10 to 100 peak hour vehicles is considered to have a low to moderate impact and is generally deemed acceptable without requiring detailed capacity analysis. The estimated 12 vehicles per hour is at the lower end of this range and so the development traffic is considered to have a low impact and can be accommodated within the existing capacity of the road network.

\section*{6. Pedestrian and Cyclist Access}

There are no paths along Dookling Drive or along the adjacent roads. There are some sections of path towards the north-east. Based on the location of the site and the proposed use, the demand for walking and cycling to and from the site would be minimal and so the provision of new paths or cycle lanes is not warranted by the proposed development.

\section*{7. Public Transport Access}

There are no existing public transport services within reasonable walking distance of the site. All residents are expected to travel via private vehicle and so there is no demand for public transport.

\section*{8. Site Specific Issues and Safety Issues}

\subsection*{8.1. Crash History}

The crash history of the adjacent road network was obtained from the MRWA Reporting Centre.
No crashes have been recorded along Dookling Drive between Great Northern Highway and Miling West Road over the five-year period from January 2018 to December 2022. The crash history does not appear to indicate any major safety issues on the adjacent road network.

The proposed development itself will generate a low volume of additional traffic and there is no indication that the development would increase the risk of crashes unacceptably.

\section*{9. Conclusion}

This Transport Impact Statement for the proposed accommodation development at 18201 Great Northern
Highway in Miling concluded the following:
- It is estimated that the development would generate approximately 12 vehicle movements during each peak hour, including 12 outbound vehicle movements during the morning peak hour and 12 inbound vehicle movements during the afternoon peak hour. This volume of traffic is low and can be accommodated within the existing capacity of the road network with no major impact. This estimate is considered to be a worst-case scenario as some workers may travel together and some may potentially be transported by bus.
- The provision of 13 car bays is considered to be sufficient for the proposed development.
- The key parking dimensions are compliant with AS2890.1.
- The crash history of the adjacent road network did not indicate any safety issue on the adjacent road network and there is no indication that the development would increase the risk of crashes unacceptably.
- It is expected that all residents and visitors will be accessing the site via a motor vehicle and so there is no demand for additional path infrastructure or public transport services.```

